analysis for steady propagation of a generic ram
play

Analysis for Steady Propagation of a Generic Ram Accelerator/ - PDF document

Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration J.M. Powers1, D.R. Fulton2, K.A. Gonthier3, and M.J. Grismer4 Department of Aerospace and Mechanical Engineering University of Notre Dame


  1. Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration J.M. Powers1, D.R. Fulton2, K.A. Gonthier3, and M.J. Grismer4 Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, Indiana prepared for the A/AA 31st Aerospace Sciences Meeting and Exhibit January 11-14, 1993 Reno, Nevada 1 Assistant Professor 2 Undergroduate Student 3 Graduate Assistant 4 Graduate Assistant

  2. Support This study was supported by the Indiana Space Consortium sponsored by NASA Headquarters.

  3. Objective of Study - Describe a methodology to determine a steady propagation speed of a projectile fired into a gaseous fuel and oxidizer mixture. - Perform a simple theoretical and numerical analyses to illustrate the methodology.

  4. ~- -~- P~ ~-~- Reaction-inducing Inert Oblique Oblique Shock Shock ,,' (Oblique Detonation) ' ' M>l M=8.4 P=16bar 600 bar Projectile s s s s · m=70g v = 2,475 m/s Accelerator Barrel 166mm Ram Accelerator, Hertzberg, et al., 1988, 1991 oblique detonation fuel --- - . . inlet m1x1ng --- ------- --- - zone -;;;::::: - Oblique Detonation Wave Engine, Dunlap, et al., 1958

  5. Selected Past Work 1. Theoretical: - Brackett and Bogdanoff, 1989, (steady speeds) - Cambier, Adelman, and Menees, 1989, 1990, - Pratt, Humphrey, and Glenn, 1991, - Yungster and Bruckner, 1992, (steady speed) - Powers and Stewart, 1992. - Powers and Gonthier, 1992a,b, (steady speeds) - Grismer and Powers, 1992, - Pepper and Brueckner, 1993 2. Experimental: - Hertzberg, Bruckner, and Knowlan, 1988, 1991.

  6. Modeling Difficulties Multi - dimensional unsteady flow field Diffusive processes: - mass diffusion, - momentum diffusion, - energy diffusion. Complex chemistry: - multiple reactions, - multiple species, - complex chemical kinetics. Complex wave interactions: . - compression waves, . - expansion waves, - combustion waves.

  7. Generic Configurations upper cowl surface y incon1ing __.. . supersonic premixed --.. H flow L lower cowl surface 0 axis of symmetry

  8. Non-Dimensional Model Equations Continuity: dp avi d +pa =O, t X. 1 Momentum: Energy: (- 8) - y p dP P dp ( ) ( ) dt dt = y-1 p K q 1-A. exp T , Species: Caloric Equation of State: 1 p --Aq, e= y-1 p Thermal Equation of State: P=pT.

  9. ~ x=~ ~Po/Po ~ ~ ~ ~ T~ ~ ~ Non-Dimensional Variables - p - P =-=-::- , P=f T= R - - ' ' Po Po Po/Po ,....., ,....., e - e U= U V V - - - ' ' 0 I Po ' 0 I Po ,.; p = ,.; p Po/Po - t = 'y=Y t . ' L L ,_ -: L Non-Dimensional Parameters y = 1 + ~ , 8 = E q = _ q_ Po/po ' Po/po ' Cv K=-L__ M _ Uo 0 - ,.; Po!Po ' ~ 'Y Po/Po .

  10. Reaction Model - Simple one-step, irreversible reaction: 'A A ..... B (exothermic reaction) A = reaction progress variable - Arrhenius kinetics: rate oc exp( - Ea / RT) kinetic _ - high activation energy limit.

  11. ~ ~ K(l-A)exp(-~p) Thermal Explosion Theory Reduced Equations (assumed v. = 0): I y-1) p K q ( 1-A) exp(- ~ p) , = ( , = P(O) = P1 , A(O) = 0 . Linearize the equations: P = P1 + P' , A= "A' . where "A' << 1 . P' << 1 , Solve for the pressure perturbation P'.

  12. ~ Solution: 0 -8 1 1 P' Pi I = - + n 1 - ( y-1) q K exp p p t 2 ( ) • P 1 0 Pi 1 Solve for the thermal explosion time: (corresponds to the induction time) Induction distance: I Lead Shock 1 ~ I I I y I I x

  13. ~ Shock 1 ~Lead Flame Sheet I P1 I Calculation of Surface Forces 1. Wave Drag: 2. Net Thrust Force: Fnet = P3 (2 Lind cos 8 - 1) tan 8 + [P4 (2 - 2 Lind cos 0) - P1] tan 0 . 3. Combustion Induced Thrust: Fe = Fnet + Fv .

  14. +~A sin~ Jump Relations Across Lead Shock 1 + yM5 sin -l 2 ~ Pi= + 1) M5 sin ( y 2 ~ Ui = .JY Mo (ti sin 2 ~ + cos 2 ~) Vi= .JY"Mo cos~ 1 - ti) ( where 2 A = ( 1 + y M5 sin - ( y + 1) y M5 sin 2 ~ 2 ~ ) - x (2 + (y- 1 )M5 sin 2 ~)

  15. -1~ -!~ Flow Expansion Region Prandtl - Meyer Function: /Y+f y-1 ( 2 ) 2 v(M ) 3 = "\/ y:1 tan y+ l M 3 - 1 - tan M 3 - 1 Isentropic Relations: 1 _1 1 + y- Mi y-1 p3 - 2 ---- l + Pl y;l M~ 1 _J_ 1 + y- Mi y-1 P3 2 ------ l + y-1 M~ P1 2 Velocity Components: V3 = - M3 . f?3 sine U3 = M3 - l.Y3 11 ·yp;- 11 ·yp;- cos e '

  16. M~ M~ Jump Relations ·Across Flame Sheet ±ill p4 _ .1 + y -i . (y+ l)M~ p3 where B = (1 + yM~) 2 -(y- l)M~ Q) x ( 2 + ( + 2 ( y-1 ) y-1 ) ~:

  17. sin~a+S) Tail End Compression Region 1 + yM~ sin,a+e) ± {E -I (y+ l)M~ sin,a+S) where (1 + yM~ C = sin,a+s))2-(y+ l)'YM~ sin,a+S) x (2 + (Y- 1) M~

  18. Numerical Analysis RPLUS Code: - developed at NASA Lewis, - based on LU-SSOR numerical scheme. Computational Grid: - 199 x 99 fixed grid. Convergence: - 500 iterations, . - residual unsteady terms had scaled values -8 < 1.0 x 10 . Computations: - run on IBM RS/6000 POWERstation 350 - run time about one hour.

  19. ~ ~ ~ Parameters Geometric: 8 = 5°, L = 0.10 m . Kinetic: k = 1.0 x 10 7 /sec, E = 1.019 x 10 6 J/kg, 1.295 x 10 6 J/kg < q < 1.704 x 10 7 J/kg. Atmospheric free-stream conditions: Po= 1.01325 x 10 5 Pa , p 0 = 1.225 kg/m 3 • Thermodynamic constants: 7 Y= 5 , R = 287 J/(kg K) , cv = 717.5 J/(kg/K).

  20. ~ ~ ~ ~ Velocity (m/s) 2000 2500 3000 0.030 Net Thrust, 0.020 200 Numerical 0.010 0.000 0 -0.010 .... -0.020 -200 -0.030 ~._._._~._._~ 5 6 7 8 9 10 M 0 , Mach Number Velocity (m/s) 4000 5000 6000 7000 0.20 2000 ,,-.-, Net Thrust, ca -e- q = 18.13, q = 1.50x106 J/kg c -A- q = 16.32, q = 1.35x106 J/kg 0 ....... Rankine- (/.) q = 14.51, <I= 1.20x106 J/kg 5 1 000 0.10 :::s'"Ij 8 ~ ....... Hugoniot ....... Q I c 0 z --- - ------- 0 "-"' .... (/.) z z -0.10 ~ .... -1 ooo a "-"' .... - 0. 2 0 '-'-'-'-'-~-l.-.J'-'-'-._._,_._._._~_._._._,_-'-= - 2 0 0 0 10 12 14 16 18 20 22 M 0 , Mach Number

  21. ~ ~ Pressure on Wedge Surf ace I x (m) 0.00 0.05 0.10 15 1500 q = 18.13 q = 1.5 x 10 6 J/kg ,.-.... M 0 = 17.53 ---- ] (stable) 0 •.-I CZl 10 Q.) s • .-I Q I ~ 0 _...._ z M 0 = 13.4 "-" 500 - (unstable) 0 0 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1 .2 x (Non-Dimensional) - rise on forebody due to shock and reaction - drop on aftbody due to rarefaction - lack of crisp shock indicates more resolution necessary - propagation speed sensitive to local pressure - trends plausible

  22. · er-1): ~.:.,-,.,-~-·eft=· *-~ ~-·<:· lil·-·-~ Pressure traces on wedge surface. k=1x10A7 Ea=3550 1500000.0 .-----..-----.-----.-----.----..------..------.-----, o Mach 13.4 Inert o Mach 13.4 Q = 1.5x1 OA6 Mach 17.53 Inert 1000000.0 Mach 17.53 Q = 1.5x1 OA6 - ro - a.. (l) '- :J en en (l) '- a.. 500000.0 0.0 L-----L---...1----.l.-----l-----'----..._ _ _____. __ ____. 0.15 0.20 0.00 0.05 0.10 x {m)

  23. ~ _._._._._._._._._._._~.1.1.J'-'-'- ~ ~ ~ ~ ~ ~ ~ ~ q, Heat of Reaction (J/kg) 1.300X10 6 1.310X10 6 1.320X10 6 1.330X10 6 10 9 3000 ~ "8 z ('I) ........ Rankine- 0 (") ....... .... .c Hugoniot '< 8 ,,--.. Analysis 2500 '-' 0 7 6.__._.__._._._._._..._._._...l....1...J._._._...__._.__._._._._._ .............. .............. _._.__. 15.90 16.10 15.60 15.70 15.80 16.00 q, Heat of Reaction (Non-Dimensional) q, Heat of Reaction (J/kg) 1.40x10 6 1.50x1o 6 1.60x10 6 1. 70x10 6 20 18 quasi-stable 6000 lo-c C1) "8 z ........ 1 6 0 0 ....... .... ..c:: Numerical u '< c;rj ,,--.. Analysis 14 c;I) 0 '-' 12 4000 10 16 17 19 20 21 18 q, Heat of Reaction (Non-Dimensional)

  24. =~-'-'-.L.-.J =~j,_.L.-'-~ x (m) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.40 0.04 Quasi-Stable Configuration 17.53, u M 0 = 0 = 5,965 mis -.. 0.30 ca 18.13, q = 1.5 x 10 6 J/kg q = ~ 0 ....... rl:l 5 "<l 0.02 s .§ 0.20 Reactant mass fraction Q '-" I § (1-A.) contours 6 :>.. 0.10 0. 0 0 0.2 0.4 0.6 0.8 1.0 1.2 x (Non-Dimensional) x (m) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.40 0.04 Unstable Configuration 13.4, u -.. 0.30 M 0 = 0 = 4,560 m/s ca ~ 0 ....... 18.13, q = 1.5 x 10 6 J/kg q = rl:l 5 "<i 0.02 s 8 ....... 0.20 Q '-" I ~ 0 6 :>.. 0.10 0. 00 L.dSsm~RSl- 0. 0 0 0.2 0. 0 0.4 0.6 0.8 1 .0 1 .2 x (Non-Dimensional)

  25. -1-L_._.L.J =~~=~ ~="'"',._L-L-_._._,0.0 x (m) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.40 0.04 Quasi-Stable Configuration - 17.53, u 0.30 M 0 = 0 = 5,965 mis ~ s:: ·- 0 q = 1.5 x 10 6 J/kg q = 18.13, C'IJ 5 0.02 - '-<: t ·- s 0.20 s a 6 '-"' Pressure (P) contours e 0 >-. 0.10 0.2 0.4 0.6 0.8 1 .0 1 .2 x (Non-Dimensional) x (m) 0.00 0.0 2 0.04 0. 06 0.08 0. 10 0 . 12 0.40 0 . 04 Unstable Configuration - 13.4, u ..- 0.30 M 0 = 0 = 4,560 mis ro ·- 0 0 q = 1.5 x 10 6 Jlkg q=l8.13, en 0 <!) '-<: i s ·- 0.02 3 0.20 a I '-"' 0 Pressure (P) contours 0 z _... >-. 0. 10 0 . 00 loi.:IC~ 0 . 00 0 .0 0 .2 0. 4 0. 6 0.8 1 .0 1 .2 x (Non-Dimensional)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend