an nl fragment for inclusion logic
play

An NL Fragment for Inclusion Logic Dietmar Berwanger joint work - PowerPoint PPT Presentation

An NL Fragment for Inclusion Logic Dietmar Berwanger joint work with Erich Grdel Dagstuhl, June Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 1 / 10 Non-reachability of Q NL z ( x z Qz


  1. An NL Fragment for Inclusion Logic Dietmar Berwanger joint work with Erich Grädel Dagstuhl, June  Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 1 / 10

  2. Non-reachability of Q NL ∃ z ( x ⊆ z ∧ ¬ Qz ∧ ∀ y ( Ezy → y ⊆ z )) Winning safety game within Q P-complete Qx ∧ ∃ z ( z ⊆ x ∧ ( V  → ∃ y ( Exy ∧ y ⊆ z )) ∧ ( V  → ∀ y ( Exy → y ⊆ z )) Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 2 / 10

  3. Solitaire games and GFP Solitaire games — only one player has nontrivial moves, in every SCC Inspire restriction to Solitaire GFP : - negation: only fixed-point-free formulae - conjunction: one member fixed-point-free Captures NL on finite structures & more expressive than FO + TC on arbitrary structures Goal: Find the Solitaire-GFP fragment of Inclusion logic Obstacles: closed formulae in team semantics? dual of safety conditions Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 3 / 10

  4. Flattening Definition Formula φ ∈ Inc is flat : A ⊧ X φ iff A ⊧ { s } φ , for all s ∈ X . Lemma: flattening φ ( ¯ x ) is flat iff for any structure A , team X A ⊧ X φ ( ¯ x ) ⇐ ⇒ A ⊧ X ∃ ¯ z ( ¯ x ⊆ ¯ z ∧ φ ( ¯ z )) �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� φ ♭ ( ¯ x ) Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 4 / 10

  5. Te fragment. Take  F ∶∶= literals, ⊆ atoms φ ∨ η ∃ ¯ xφ for φ , η ∈ F φ ♭ ∧ η ∀ ¯ xφ ♭ ⎧ ⎪ ⎪ φ ( ¯ x ) if φ ∈ FO ⎪ φ ♭ ( ¯ ⎨ with x ) ∶= ⎪ ⎪ ∃ ¯ z ( ¯ x ⊆ ¯ z ∧ φ ( ¯ z )) otherwise ⎪ ⎩ Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 5 / 10

  6. Te fragment. Take  – stratified S ∃  = S ∀  = S  ∶∶= FO S ∃ i +  ∶∶= ⊆ atoms, S i φ ∨ η ∃ ¯ for φ , η ∈ S i +  xφ φ ♭ ∧ η ∀ ¯ for φ ∈ S i , η ∈ S i +  xφ ♭ S ∀ i +  ∶∶= ⊆ atoms, S i φ ♭ ∨ η ∃ ¯ xφ ♭ for φ ∈ S i , η ∈ S i +  φ ∧ η ∀ ¯ for φ , η ∈ S i +  xφ S i +  ∶∶= S ∃ i +  ∪ S ∀ i +  Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 6 / 10

  7. Te fragment. Take  — with negation N ∶∶= literals, ⊆ atoms φ ∨ η ∃ ¯ xφ for φ , η ∈ N φ ♭ ∧ η ∀ ¯ xφ ♭ ¬ φ ♭ φ ♭ ( ¯ x ) ∶= ∃ ¯ z ( ¯ x ⊆ ¯ z ∧ φ ( ¯ z )) with Semantics A ⊧ X φ ♭ ⊧ Y φ ♭ ∶ ⇐ ⇒ A / for all Y ∩ X ≠ ∅ N k : fragment with fewer than k negations. Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 7 / 10

  8. N vs Solitaire-GFP Proposition Winning solitaire games of level k can be described in N k . On arbitrary structures: N k ≡ Solitaire-GFP with alternation level k . Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 8 / 10

  9. Expressiveness Over arbitrary structures: S collapses to S ∃  = N  F ≡ S ≡ N  N i ⊊ N i +  for all levels i Over finite structures: N collapses to N  F ≡ S ≡ N Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 9 / 10

  10. Complexity Proposition 1 Model checking F , S , or N is NL-complete (data complexity). 2 Every NL-property of ordered structures is expressible in F . Dietmar Berwanger (CNRS) An NL Fragment for Inclusion Logic June 2015 10 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend