an integrated approach to modeling and mitigating sofc
play

AN INTEGRATED APPROACH TO MODELING AND MITIGATING SOFC FAILURE - PowerPoint PPT Presentation

AN INTEGRATED APPROACH TO MODELING AND MITIGATING SOFC FAILURE Andrei Fedorov, Comas Haynes, Jianmin Qu Georgia Institute of Technology DE-AC26-02NT41571 Program Managers: Travis Shultz National Energy Technology Laboratory Outline First


  1. AN INTEGRATED APPROACH TO MODELING AND MITIGATING SOFC FAILURE Andrei Fedorov, Comas Haynes, Jianmin Qu Georgia Institute of Technology DE-AC26-02NT41571 Program Managers: Travis Shultz National Energy Technology Laboratory

  2. Outline • First Order Failure Criteria for SOFC PEN Structure • Creep Modeling of YSZ/Ni Cermet • Fracture Mechanics Analysis Tool • Thermal Transient Modeling

  3. First Order Failure Criteria for SOFC PEN Structure • Objectives • Local Failure Criteria – Failure Modes – Strength Failure Criteria – Fracture Failure Criteria • Global Failure Criteria • Analyses for Various Crack Cases • Conclusion

  4. Objectives Develop first-order failure criteria to be used for the initial design, material selection and optimization against thermomechanical failure of the PEN structure in high temperature SOFCs.

  5. Failure Modes Material Characteristics • Static Strength • Fracture Toughness • Fatigue Strength Does a material contain flaws above certain threshold value? No -> Failure is strength- controlled Yes -> Failure is fracture toughness-controlled

  6. Strength-Based Failure Theory Failure occurs when σ = σ σ σ = σ f ( , , ) 1 2 3 f where σ = σ σ σ Effective Stress f ( , , ) 1 2 3 σ σ σ , , Principle Stresses 1 2 3 σ Material Strength f

  7. Fracture-Based Failure Theory Fracture occurs when ⎛ ⎞ − ν 2 2 1 K = + + = 2 2 ⎜ III ⎟ G K K G − ν I II c ⎝ ⎠ E 1 where Energy Release Rate G K K K Stress Intensity Factors I II III G c Fracture Toughness

  8. YSZ Electrolyte σ = σ Maximum Normal Stress Criterion f { } σ = σ σ σ = σ σ σ f ( , , ) max , , 1 2 3 1 2 3 σ = 100 ~ 300 MPa f ⎛ ⎞ − ν 2 2 1 K = + + = 2 2 ⎜ III ⎟ Fracture Criterion G K K G − ν I II c ⎝ ⎠ E 1 G = 2 ฀ 7.8 13.7 J m c

  9. YSZ/Ni Cermet σ = σ Von Mises Criterion (elevated temp) f ( ) ( ) ( ) 2 2 2 σ = σ − σ + σ − σ + σ − σ + τ + τ + τ 2 2 2 2 2 2 x y y z z x xy yz zx σ = σ Maximum Normal Stress Criterion f { } σ = σ σ σ = σ σ σ f ( , , ) max , , 1 2 3 1 2 3

  10. ⎡ ⎤ E ( ) σ = σ + − − Ni ⎢ ⎥ V 1 V V − ν f YSZ YSZ YSZ Void ⎣ ⎦ E (1 ) YSZ Ni σ = 100 ~ 300MPa = YSZ tensile strength YSZ E = Ni Young's modulus Ni = YSZ Young's modulus E YSZ ν = Ni Poisson's ratio Ni V = YSZ Volume fraction YSZ V = Void Volume fraction Void

  11. Fracture Curvature Criterion R ρ c Global Failure Criteria < Stack Assembly ρ 1/ R ρ = W Warpage Warpage Criterion c W L < W Processing

  12. Implementation � Based on material/geometry parameters to compute W c and ρ c � Measure W or ρ of each cell after sintering � Compare the measured W with W c or ρ with ρ c ρ = 1/ R L W R

  13. Crack Types A – crack in the cathode B – crack in the anode C – delamination crack between the cathode and electrolyte D – delamination crack between the anode and the electrolyte E – blister crack on the anode/electrolyte interface F – crack in the electrolyte A A A A h c h c G G cathode cathode cathode cathode E E C C h e h e F F E E electrolyte electrolyte electrolyte electrolyte D D F F anode anode anode anode h a h a B B L L

  14. Max. Allowable Warpage G c = fracture toughness ⎛ ⎞ W G L = c c ⎜ ⎟ Y h e = electrolyte thickness ⎝ ⎠ L h E h E e = modulus of electrolyte e e e − 1/ 2 ⎡ ⎤ C rack A 1 / 2 2 ⎛ ⎞ ⎛ ⎞ ∆ α 2 ⎛ ⎞ 3 h E a ⎢ ⎥ = + − ⎜ ⎟ ⎜ ⎟ 2 2 ⎜ ⎟ Y t − ν ⎝ 4 ⎠ 2 ⎢ ⎥ ⎝ 16 H E ⎠ ⎝ Q (1 ) ⎠ 2 ⎣ ⎦ 3 3 − 1 / 2 1/ 2 ⎛ ⎞ ⎛ ⎞ ∆ α C rack C 3 2 h E c F 4 h ( ) F = − + − 2 2 ⎜ 2 2 ⎟ ⎜ 3 2 3 2 1 ⎟ Y Q Q 1 3 ⎝ ⎠ ⎝ ⎠ 16 16 h c 3 3 − 1/ 2 ⎡ ⎤ C rack D 1 / 2 2 ⎛ ⎞ ⎛ ⎞ ∆ α − 2 ⎛ ⎞ 3 h h h = ⎢ + ⎥ ⎜ 2 ⎟ ⎜ ⎟ 1 3 ⎜ ⎟ Y π − ν ⎢ ⎝ ⎠ ⎥ ⎝ ⎠ ⎝ ⎠ 16 aE Q (1 ) 2 ⎣ ⎦ 2 2 − 1/ 2 1 / 2 ⎛ ⎞ ⎛ ⎞ ∆ α C rack E 2 3 h E c F 4 h ( ) F − − = ρ + 2 2 2 ⎜ 2 2 ⎟ ⎜ ce 2 ce 1 ⎟ Y Q Q 1 3 ⎝ ⎠ 16 h ⎝ 16 h c ⎠ 2 ce ce ⎛ ⎞ C rack F 2 Q h h E 1 P P = + 2 2 2 ⎜ 1 2 ⎟ Y ∆ α ⎝ ⎠ 4 P G 1 c

  15. Implementation Definition of Variables: Material Properties Needed: � See our monthly report or � Elastic moduli e-mail � Coefficient of thermal jianmin.qu@me.gatech.ed expansion u � Fracture toughness Basic Assumptions: Other Parameters needed: � Linear elastic fracture � Layer thickness mechanics � Warpage (curvature) Implementation: � A FORTRAN code

  16. Materials Properties CTE(10 -6 / o C) Young’s Poisson’s Thickness µ Modulus (GPa) Ratio ( m ) Cathode 90 0.3 11.7 75 Electrolyte 200 0.3 10.8 15 Anode 96 0.3 11.2 500 Considering sintering process, the set of materials in table will result in – tensile stress in cathode; – compressive stress in electrolyte; – compressive stress in anode;

  17. Average Stress in Cathode Average in-Plane Stress in 800 o C 20 o C 800 o C 800 o C 20 o C 60 cooling NiO reduction cooling heating 50 40 the PEN Layers 30 Stress (MPa) 20 10 0 0 20 40 60 80 100 -10 -20 • Stress free at 800 o C Cathode -30 -40 Time • No-creep Average Stress in Electrolyte 800 o C 20 o C 800 o C 800 o C 20 o C • NiO reduction results in 0.1% NiO reduction cooling cooling heating 20 vol. shrinkage -20 Stress (MPa) -60 -100 A A -140 Electrolyte -180 0 20 40 60 80 100 h c G cathode cathode E Time C Average Stress in Anode h e E F electrolyte electrolyte D 800 o C 20 o C 800 o C 800 o C 20 o C F cooling NiO reduction cooling heating anode 8 anode 6 h a 4 Stress (MPa) 2 0 0 20 40 60 80 100 -2 Anode -4 B -6 L Time

  18. Numerical Examples of Max. Allowable Warpage 10 Crack C is the limiting Crack C a / h = 0.01 Crack D 8 factor, unless crack A is 3 Crack A larger than 5% of the 6 cathode thickness. W (mm) L = 10 cm a / h 3 = 0.05 4 A A h 3 cathode cathode G E C h 2 E F electrolyte electrolyte D 2 F anode anode a / h 3 = 0.1 h 1 0 0 5 10 15 20 B G c (J/m 2 ) L

  19. Statistical Consideration Failure theories have the following form: Failure occurs when Σ > Σ f where Σ is the “ stress ” (e.g., max. normal stress, Mises stress, or SIFs, max. warpage, etc. ) and Σ f is the “ strength ” (e.g., yield strength, fracture toughness, etc.) Both Σ and Σ f can be random variables with certain distributions, such normal distribution, Weibull distribution, etc.

  20. Assume: g ( σ ) = distribution of stress; g f ( σ ) = distribution of strength The probability of failure at a given stress σ is σ ∫ g ( ) x dx f −∞ The probability of failure for a given stress distribution g ( σ ) is ⎡ ⎤ ∞ σ ∫ ∫ = σ σ ( ) ( ) p g g x dx d ⎢ ⎥ ⎣ ⎦ f f −∞ −∞

  21. Example (Normal Distributions) ⎡ ⎤ 2 ⎛ ⎞ σ − σ 1 1 ⎢ ⎥ σ = − ⎜ f ⎟ Strength distribution g ( ) exp ⎜ ⎟ ⎢ ⎥ f π 2 s s 2 ⎝ ⎠ ⎣ ⎦ f f ⎡ ⎤ σ − σ 2 ⎛ ⎞ 1 1 σ = − ⎢ ⎥ ⎜ ⎟ Stress distribution g ( ) exp π ⎝ ⎠ ⎢ ⎥ 2 s s 2 ⎣ ⎦ s = Standard deviation σ = Mean value ∞ ∫ σ σ = g ( ) d 1 −∞ σ σ f ⎡ ⎤ ⎡ ⎤ σ − σ σ − σ 2 ⎛ ⎞ 1 ∞ ∫ = − σ ⎢ ⎥ ⎢ ⎥ f ⎜ ⎟ p Exp Erfc d f π ⎝ ⎠ −∞ ⎢ ⎥ ⎢ ⎥ 2 s 2 s 2 s 2 ⎣ ⎦ ⎣ ⎦ f

  22. Failure Probability σ σ σ = σ s s p f f f f f Factor of Safety Deviation Failure Probability 1.0 any value 0.5 3.8 10 − × 2.0 0.2 2 2.3 10 − × 5.0 0.2 4 7.3 10 − × 10.0 0.2 5 9.2 10 − × 1.5 0.1 3 2.0 10 − × 2.0 0.1 4 1.2 10 − × 3.0 0.1 6 5.7 10 − × 4.0 0.1 8 1.2 10 − × 1.5 0.05 6 7.7 10 − × 2 0.05 13 2.3 10 − × 1.5 0.02 32

  23. = s s f σ σ f 0.1 0.075 p 0.5 f 0.05 0.4 0.025 0 0.3 1 1 s 0.2 2 2 σ f σ 0.1 3 3 f σ 4

  24. Summary - First Order Failure Criteria • Local and global failure criterion were established. These criterion may be easily used to aid the initial design, material selection and optimization of SOFCs. • Using the local failure criteria, the user can predict (estimate) the potential material failure • Using the global failure criteria, the user can predict whether a cell can survive the stacking assembly process

  25. A Numerical Simulation Tool for Fracture Analysis in Solid Oxide Fuel Cells ( ) − ε + ≡ × 1 2 i K = K iK applied stress FL I II Crack Material 1 Material 2 KI KII KIII opening shear out of plane

  26. Significance of SIFs 1. Will the crack grow? 2 1 KK K + = III G ( ) πε µ ic * 2 * E cosh 2 2. In what direction? (What is mode mixity?) − ⎡ ⎤ ε i 1 Im[ K L ] ψ = ⎢ ⎥ tan ε i ⎣ ⎦ Re[ K L ]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend