an allegorical semantics of modal logic
play

An Allegorical Semantics of Modal Logic Kohei Kishida Dalhousie - PowerPoint PPT Presentation

An Allegorical Semantics of Modal Logic Kohei Kishida Dalhousie University 20 Sept, 2018 Kripke semantics of modal logic has a successful model theory: e.g. bisimulation theorems, correspondence theory, duality theory. Goals Give


  1. An Allegorical Semantics of Modal Logic Kohei Kishida Dalhousie University 20 Sept, 2018

  2. Kripke semantics of modal logic has a successful model theory: e.g. bisimulation theorems, correspondence theory, duality theory. Goals • Give structural accounts of the model theory. — Rel will do the job. 1 / 23

  3. Kripke semantics of modal logic has a successful model theory: e.g. bisimulation theorems, correspondence theory, duality theory. Goals • Give structural accounts of the model theory. — Rel will do the job. • Rel has many generalizations. Identify which accommodates the model theory. —Allegories, i.e. the categories of relations of regular categories. • In effect, Kripke semantics will be extended to regular categories. 1 / 23

  4. Kripke semantics of modal logic has a successful model theory: e.g. bisimulation theorems, correspondence theory, duality theory. Goals • Give structural accounts of the model theory. — Rel will do the job. • Rel has many generalizations. Identify which accommodates the model theory. —Allegories, i.e. the categories of relations of regular categories. • In effect, Kripke semantics will be extended to regular categories. Outline 1 Recast Kripke semantics and its model theory using Rel . 2 Briefly review allegories. 3 Give allegorical semantics of modal logic, and model theory. 1 / 23

  5. Kripke Semantics Interprets propositional logic + modal operators � i , � i ( i ∈ I ). 2 / 23

  6. Kripke Semantics Interprets propositional logic + modal operators � i , � i ( i ∈ I ). Two layers of semantic structures: • A Kripke frame, a set X plus R i : X → � X . Each R i interprets � i , � i . • A Kripke model, a frame ( X , R i ) plus � p � ⊆ X . Each � p � interprets a prop. variable p . 2 / 23

  7. Kripke Semantics Interprets propositional logic + modal operators � i , � i ( i ∈ I ). Two layers of semantic structures: • A Kripke frame, a set X plus R i : X → � X . Each R i interprets � i , � i . • A Kripke model, a frame ( X , R i ) plus � p � ⊆ X . Each � p � interprets a prop. variable p . x � ϕ “ ϕ is true at x ”, for a world / state x ∈ X and a formula ϕ . 2 / 23

  8. Kripke Semantics Interprets propositional logic + modal operators � i , � i ( i ∈ I ). Two layers of semantic structures: • A Kripke frame, a set X plus R i : X → � X . Each R i interprets � i , � i . • A Kripke model, a frame ( X , R i ) plus � p � ⊆ X . Each � p � interprets a prop. variable p . x � ϕ “ ϕ is true at x ”, for a world / state x ∈ X and a formula ϕ . x � p ⇐⇒ x ∈ � p � (via the model), x � ϕ ∧ ψ ⇐⇒ x � ϕ and x � ψ, x � � i ϕ ⇐⇒ y � ϕ for all y s.th. xR i y (via the frame), x � � i ϕ ⇐⇒ y � ϕ for some y s.th. xR i y (via the frame). 2 / 23

  9. tr “Standard translation”: “ x � ϕ ” ϕ ( x ) tr ( p ) = Px , tr ( ϕ ∧ ψ ) = tr ( ϕ ) ∧ tr ( ψ ) , tr ( � i ϕ ) = ∀ y. R i x y ⇒ tr ( ϕ )[ y / x ] , tr ( � i ϕ ) = ∃ y. R i x y ∧ tr ( ϕ )[ y / x ] . 3 / 23

  10. tr “Standard translation”: “ x � ϕ ” ϕ ( x ) tr ( p ) = Px , tr ( ϕ ∧ ψ ) = tr ( ϕ ) ∧ tr ( ψ ) , tr ( � i ϕ ) = ∀ y. R i x y ⇒ tr ( ϕ )[ y / x ] , tr ( � i ϕ ) = ∃ y. R i x y ∧ tr ( ϕ )[ y / x ] . Two layers of semantic structures = ⇒ two (split) perspectives: • Bisimulation theorems : “modal logic is about LTSs (Kripke models).” • Correspondence theory : “modal logic is about binary relations (Kripke frames).” 3 / 23

  11. tr “Standard translation”: “ x � ϕ ” ϕ ( x ) tr ( p ) = Px , tr ( ϕ ∧ ψ ) = tr ( ϕ ) ∧ tr ( ψ ) , tr ( � i ϕ ) = ∀ y. R i x y ⇒ tr ( ϕ )[ y / x ] , tr ( � i ϕ ) = ∃ y. R i x y ∧ tr ( ϕ )[ y / x ] . Two layers of semantic structures = ⇒ two (split) perspectives: • Bisimulation theorems : “modal logic is about LTSs (Kripke models).” • Correspondence theory : “modal logic is about binary relations (Kripke frames).” Also, • Duality theory : Kripke frames ≃ ( powerset algebras with operators ) op . 3 / 23

  12. tr “Standard translation”: “ x � ϕ ” ϕ ( x ) tr ( p ) = Px , tr ( ϕ ∧ ψ ) = tr ( ϕ ) ∧ tr ( ψ ) , tr ( � i ϕ ) = ∀ y. R i x y ⇒ tr ( ϕ )[ y / x ] , tr ( � i ϕ ) = ∃ y. R i x y ∧ tr ( ϕ )[ y / x ] . Two layers of semantic structures = ⇒ two (split) perspectives: • Bisimulation theorems : “modal logic is about LTSs (Kripke models).” • Correspondence theory : “modal logic is about binary relations (Kripke frames).” Also, • Duality theory : Kripke frames ≃ ( powerset algebras with operators ) op . Rel gives a more unifying approach to these perspectives. 3 / 23

  13. Also, some variants of modal logic : • Temporal logic has modalities about the future and about the past, i.e. modalities of opposite relations. • Dynamic logic has composition and union of transitions. • “Dynamic epistemic logic” has modalities of transitions across different models. • Different ⊢ σ for different stages σ of computation (e.g. quote and unquote as modalities). Thus we need involution, union, etc., and categorification—hence Rel . 4 / 23

  14. Semantics Using Rel (take 1) Every relation R : X → � Y induces two adjoint pairs: ∃ R † ∃ R P X ⊥ P Y P X ⊥ P Y ∀ R † ∀ R ∃ R ( S ) = { v ∈ Y | w ∈ S for some w s.th. w R v } , ∀ R ( S ) = { v ∈ Y | w ∈ S for all w s.th. w R v } . 5 / 23

  15. Semantics Using Rel (take 1) Every relation R : X → � Y induces two adjoint pairs: ∃ R † ∃ R P X ⊥ P Y P X ⊥ P Y ∀ R † ∀ R ∃ R ( S ) = { v ∈ Y | w ∈ S for some w s.th. w R v } , ∀ R ( S ) = { v ∈ Y | w ∈ S for all w s.th. w R v } . E.g. For R = f a function, ∃ f ⊣ ∀ f † = f − 1 = ∃ f † ⊣ ∀ f . 5 / 23

  16. Semantics Using Rel (take 1) Every relation R : X → � Y induces two adjoint pairs: ∃ R † ∃ R P X ⊥ P Y P X ⊥ P Y ∀ R † ∀ R ∃ R ( S ) = { v ∈ Y | w ∈ S for some w s.th. w R v } , ∀ R ( S ) = { v ∈ Y | w ∈ S for all w s.th. w R v } . E.g. For R = f a function, ∃ f ⊣ ∀ f † = f − 1 = ∃ f † ⊣ ∀ f . E.g. � � ϕ � = ∃ R † � ϕ � and � � ϕ � = ∀ R † � ϕ � for R : X → � X . We write � and � for the opposite, ∃ R and ∀ R . 5 / 23

  17. Semantics Using Rel (take 1) Every relation R : X → � Y induces two adjoint pairs: ∃ R † ∃ R P X ⊥ P Y P X ⊥ P Y ∀ R † ∀ R ∃ R ( S ) = { v ∈ Y | w ∈ S for some w s.th. w R v } , ∀ R ( S ) = { v ∈ Y | w ∈ S for all w s.th. w R v } . E.g. For R = f a function, ∃ f ⊣ ∀ f † = f − 1 = ∃ f † ⊣ ∀ f . E.g. � � ϕ � = ∃ R † � ϕ � and � � ϕ � = ∀ R † � ϕ � for R : X → � X . We write � and � for the opposite, ∃ R and ∀ R . Complete atomic Boolean algebras (“caBas”, ≃ powerset algebras): • caBa ∨ with all- ∨ -preserving maps, • caBa ∧ with all- ∧ -preserving maps. Then ∃ − : Rel → caBa ∨ and ∀ − : Rel → caBa ∧ , and moreover . . . . 5 / 23

  18. ∃ − : Rel → caBa ∨ and ∀ − : Rel → caBa ∧ are (1-) equivalences. 6 / 23

  19. ∃ − : Rel → caBa ∨ and ∀ − : Rel → caBa ∧ are (1-) equivalences. Thm (Thomason 1975) . Kripke frames ≃ ( caBas with ∨ -preserving operators ) op . f − 1 f X Y P X P Y = ∃ R = ∃ S R − − S X Y P X P Y f f − 1 6 / 23

  20. ∃ − : Rel → caBa ∨ and ∀ − : Rel → caBa ∧ are (1-) equivalences. Thm (Thomason 1975) . Kripke frames ≃ ( caBas with ∨ -preserving operators ) op . f − 1 f X Y P X P Y = ∃ R = ∃ S R − − S X Y P X P Y f f − 1 Thm. Bisimulations preserve satisfaction. Pf. Because they are spans of homomorphisms. f g X Z Y = = R − − U − S X Z Y g f 6 / 23

  21. Rel is moreover enriched in Pos . 7 / 23

  22. Rel is moreover enriched in Pos . • ∃ − : Rel → caBa ∨ is a 2-equivalence. • ∃ − † : Rel op → caBa ∨ is a 1-cell duality. • ∀ − : Rel co → caBa ∧ is a 2-cell duality. • ∀ − † : Rel coop → caBa ∧ is a biduality. 7 / 23

  23. Rel is moreover enriched in Pos . • ∃ − : Rel → caBa ∨ is a 2-equivalence. • ∃ − † : Rel op → caBa ∨ is a 1-cell duality. • ∀ − : Rel co → caBa ∧ is a 2-cell duality. • ∀ − † : Rel coop → caBa ∧ is a biduality. Thm (Lemmon-Scott 1977) . ( R n ) † ; R m ⊆ R ℓ ; ( R k ) † corresponds to � m � k ϕ ⊢ � n � ℓ ϕ, � n � ℓ ϕ ⊢ � m � k ϕ. ( R n ) † ; R m ⊆ R ℓ ; ( R k ) † ( R n ) † ; R m ⊆ R ℓ ; ( R k ) † Pf. � n ◦ � m � � ℓ ◦ � k � ℓ ◦ � k � � n ◦ � m � m � � n ◦ � ℓ ◦ � k � n ◦ � ℓ ◦ � k � � m � m ◦ � k � � n ◦ � ℓ � n ◦ � ℓ � � m ◦ � k E.g. • ϕ ⊢ � ϕ , � ϕ ⊢ ϕ ⇐⇒ 1 ⊆ R (reflexivity); • �� ϕ ⊢ � ϕ , � ϕ ⊢ �� ϕ ⇐⇒ R ; R ⊆ R (transitivity); • ϕ ⊢ � � ϕ , � � ϕ ⊢ ϕ ⇐⇒ R † ⊆ R (symmetry). 7 / 23

  24. Semantics in Rel (take 2) Worlds x ∈ X are functions x : 1 → X , or x . Propositions ϕ ⊆ X are relations ϕ : X → � 1, or ϕ . 8 / 23

  25. Semantics in Rel (take 2) Worlds x ∈ X are functions x : 1 → X , or x . Propositions ϕ ⊆ X are relations ϕ : X → � 1, or ϕ . So the three components of Kripke frames and models become x , R i , p . 8 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend