an algebraic framework for
play

An Algebraic Framework for Pseudorandom Functions and Applications - PowerPoint PPT Presentation

An Algebraic Framework for Pseudorandom Functions and Applications to Related-Key Security Michel Abdalla, Fabrice Benhamouda, Alain Passelgue Pseudorandom functions [GGM86] - efficiently computable function : -


  1. An Algebraic Framework for Pseudorandom Functions and Applications to Related-Key Security Michel Abdalla, Fabrice Benhamouda, Alain Passelègue

  2. Pseudorandom functions [GGM86] - efficiently computable function 𝐺: 𝐿 Γ— 𝐸 β†’ 𝑆 - indistinguishable from a random function 𝑔: 𝐸 β†’ 𝑆 𝑏 ∈ 𝐿 𝑦 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝐺(𝑏, 𝑦) 𝑔(𝑦) 1/22

  3. Number-theoretic PRF [NR97] DDH-based (Naor-Reingold) PRF π‘œ Γ— 0,1 π‘œ β†’ 𝔿 𝑂𝑆: β„€ π‘ž 𝑦𝑗 π‘œ 𝑕 𝑗=1 𝑏 𝑗 𝑏 , 𝑦 ↦ 2/22

  4. Number-theoretic PRF [NR97] DDH-based (Naor-Reingold) PRF π‘œ Γ— 0,1 π‘œ β†’ 𝔿 𝑂𝑆: β„€ π‘ž 𝑦 𝑗 π‘œ 𝑗=1 𝑏 , 𝑦 ↦ 𝑏 𝑗 2/22

  5. Number-theoretic PRF [NR97] DDH-based (Naor-Reingold) PRF π‘œ Γ— 0,1 π‘œ β†’ 𝔿 𝑂𝑆: β„€ π‘ž 𝑦 𝑗 with 𝑄 π‘œ π‘œ = 𝑗=1 𝑏 , 𝑦 ↦ 𝑄 𝑦 ( 𝑏) 𝑦 π‘ˆ 1 , … , π‘ˆ π‘ˆ 𝑗 2/22

  6. Number-theoretic PRF [NR97] DDH-based (Naor-Reingold) PRF π‘œ Γ— 0,1 π‘œ β†’ 𝔿 𝑂𝑆: β„€ π‘ž 𝑦 𝑗 with 𝑄 π‘œ π‘œ = 𝑗=1 𝑏 , 𝑦 ↦ 𝑄 𝑦 ( 𝑏) 𝑦 π‘ˆ 1 , … , π‘ˆ π‘ˆ 𝑗 fact 1: 𝑦 π‘¦βˆˆ 0,1 π‘œ linearly independent π‘œ -variate polynomials 𝑄 fact 2: other constructions with the same form (𝐢𝑁𝑆, 𝑀𝑋, … ) 2/22

  7. Main question π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ? 𝑦 π‘¦βˆˆπΈ linearly independent π‘œ -variate polynomials over β„€ π‘ž 𝑄 3/22

  8. Main question π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ? 𝑦 π‘¦βˆˆπΈ linearly independent π‘œ -variate polynomials over β„€ π‘ž 𝑄 (standard assumption?) 3/22

  9. Outline - motivation for such an equivalence and proof - applications to (RKA) PRF - new algebraic framework for related-key security 4/22

  10. Motivation 1 π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials 𝑄 5/22

  11. Motivation 1 π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials 𝑄 toy example: π‘œ Γ— 0,1 π‘œ ↦ 𝑗=1 𝑦 𝑗 ∈ 𝔿 is a PRF π‘œ 𝑂𝑆: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑏 𝑗 proof: 𝑦 ∈ 0,1 π‘œ are linearly independent 𝑦 𝑗 π‘œ { 𝑗=1 π‘ˆ 𝑗 5/22

  12. Motivation 2 Def: Ξ¦ -RKA-PRF [BK03] - Ξ¦ βŠ† πΊπ‘£π‘œ(𝐿, 𝐿) a class of functions - efficiently computable function 𝐺: 𝐿 Γ— 𝐸 β†’ 𝑆 - indistinguishable from a random function 𝑔: 𝐿 Γ— 𝐸 β†’ 𝑆 𝑏 ∈ 𝐿 𝑏 ∈ 𝐿 𝝔, 𝑦 𝝔, 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝐺(𝝔 𝒃 , 𝑦) 𝑔(𝝔 𝒃 , 𝑦) 6/22

  13. Motivation 2 Def: Ξ¦ -RKA-PRF [BK03] - Ξ¦ βŠ† πΊπ‘£π‘œ(𝐿, 𝐿) a class of functions - efficiently computable function 𝐺: 𝐿 Γ— 𝐸 β†’ 𝑆 - indistinguishable from a random function 𝑔: 𝐿 Γ— 𝐸 β†’ 𝑆 𝑏 ∈ 𝐿 𝑏 ∈ 𝐿 𝝔, 𝑦 𝝔, 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝐺(𝝔 𝒃 , 𝑦) 𝑔(𝝔 𝒃 , 𝑦) [BK03]: impossibility results for certain classes 6/22

  14. Motivation 2 Def: Ξ¦ -RKA-PRF [BK03] - Ξ¦ βŠ† πΊπ‘£π‘œ(𝐿, 𝐿) a class of functions - efficiently computable function 𝐺: 𝐿 Γ— 𝐸 β†’ 𝑆 - indistinguishable from a random function 𝑔: 𝐿 Γ— 𝐸 β†’ 𝑆 𝑏 ∈ 𝐿 𝑏 ∈ 𝐿 𝝔, 𝑦 𝝔, 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝐺(𝝔 𝒃 , 𝑦) 𝑔(𝝔 𝒃 , 𝑦) [BK03]: impossibility results for certain classes goal: Ξ¦ -RKA-security for largest possible classes 6/22

  15. π‘œ Γ— 𝐸 ↦ 𝑄 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 π‘œ contains only π‘œ -variate polynomials Ξ¦ βŠ† β„€ π‘ž π‘ˆ 1 , … , π‘ˆ 7/22

  16. π‘œ Γ— 𝐸 ↦ 𝑄 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 π‘œ contains only π‘œ -variate polynomials Ξ¦ βŠ† β„€ π‘ž π‘ˆ 1 , … , π‘ˆ then 𝐺 𝜚 𝑏 , 𝑦 = 𝑄 𝑦 𝜚 𝑏 = 𝑄 𝑦 ∘ 𝜚 𝑏 7/22

  17. π‘œ Γ— 𝐸 ↦ 𝑄 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 π‘œ contains only π‘œ -variate polynomials Ξ¦ βŠ† β„€ π‘ž π‘ˆ 1 , … , π‘ˆ then 𝐺 𝜚 𝑏 , 𝑦 = 𝑄 𝑦 𝜚 𝑏 = 𝑄 𝑦 ∘ 𝜚 𝑏 π‘œ 𝑏 ∈ β„€ π‘ž π‘œ 𝑏 ∈ β„€ π‘ž 𝜚, 𝑦 𝜚, 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝑄 𝑦 ∘ 𝜚 𝑏 $ 7/22

  18. π‘œ Γ— 𝐸 ↦ 𝑄 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 ∈ 𝔿 π‘œ contains only π‘œ -variate polynomials Ξ¦ βŠ† β„€ π‘ž π‘ˆ 1 , … , π‘ˆ then 𝐺 𝜚 𝑏 , 𝑦 = 𝑄 𝑦 𝜚 𝑏 = 𝑄 𝑦 ∘ 𝜚 𝑏 π‘œ 𝑏 ∈ β„€ π‘ž π‘œ 𝑏 ∈ β„€ π‘ž 𝜚, 𝑦 𝜚, 𝑦 β‰ˆ 𝑑 𝐺 𝑔 𝑄 𝑦 ∘ 𝜚 𝑏 $ lin. ind. π‘œ -variate polynomials 𝑄 𝑦 ∘ 𝜚 π‘¦βˆˆπΈ 𝜚∈Φ 7/22

  19. Summary of our (RKA) PRF results PRFs: simple proofs for 𝑂𝑆, 𝐢𝑁𝑆, 𝑀𝑋, π‘™π‘€π‘—π‘œ and their extensions 𝒃 𝒋 ↦ 𝒃 𝝉(𝒋) 𝒃 𝒋 ↦ 𝑸(𝒃 𝝉(𝒋) ) 𝚾 𝒃 𝒋 ↦ 𝒃 𝒋 + 𝒄 𝒋 𝒃 𝒋 ↦ 𝒃 𝒋 βˆ— 𝒄 𝒋 𝒃 𝒋 ↦ 𝑸(𝒃 𝒋 ) [BC10] 𝑂𝑆 βˆ— 𝑂𝑆 βˆ— , 𝑀𝑋 ? ? ? (exp. time) [ABPP14] 𝑂𝑆 βˆ— 𝑂𝑆 βˆ— 𝑂𝑆 βˆ— ? ? this paper 𝑂𝑆, 𝑂𝑆 βˆ— , 𝑂𝑆, 𝑂𝑆 βˆ— , 𝑂𝑆, 𝑂𝑆 βˆ— , 𝑂𝑆 π‘šπ‘—π‘œ , 𝑂𝑆 π‘šπ‘—π‘œ 𝑀𝑋, π‘™π‘€π‘—π‘œ, … 𝑀𝑋, π‘™π‘€π‘—π‘œ, … 𝑀𝑋, π‘™π‘€π‘—π‘œ, … 𝐢𝑁𝑆 8/22

  20. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 ? π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 9/22

  21. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 ? π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 10/22

  22. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 ? π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 assume 𝑄 𝑦 0 = πœ‡ 1 𝑄 𝑦 1 + … + πœ‡ π‘Ÿ 𝑄 𝑦 π‘Ÿ 10/22

  23. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 assume 𝑄 𝑦 0 = πœ‡ 1 𝑄 𝑦 1 + … + πœ‡ π‘Ÿ 𝑄 𝑦 π‘Ÿ π‘œ 𝑏 ∈ β„€ π‘ž 𝑦 0 , 𝑦 1 , … , 𝑦 π‘Ÿ 𝑦 0 , 𝑦 1 , … , 𝑦 π‘Ÿ ≉ 𝑑 𝐺 𝑔 𝑔 𝑦 0 , … , 𝑔(𝑦 π‘Ÿ ) [𝑄 𝑦 0 ( 𝑏)], … , [𝑄 𝑦 π‘Ÿ ( 𝑏)] πœ‡ π‘Ÿ 𝑔 𝑦 0 β‰  𝑔 𝑦 1 πœ‡ 1 β‹… … β‹… 𝑔 𝑦 π‘Ÿ 𝑄 𝑦 0 ( 𝑏) = πœ‡ 1 𝑄 𝑦 1 𝑏 + … + πœ‡ π‘Ÿ 𝑄 𝑦 π‘Ÿ 𝑏 πœ‡ π‘Ÿ πœ‡ 1 β‹… … β‹… 𝑄 = 𝑄 𝑦 1 𝑏 𝑦 π‘Ÿ 𝑏 10/22

  24. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 ? π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 11/22

  25. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 ? π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 π‘œ 𝑏 ∈ β„€ π‘ž 𝑄 𝑄 Real Rand [𝑄( 𝑏)] $ where the polynomials queried are lin. ind. 11/22

  26. 𝑦 π‘¦βˆˆπΈ lin. ind. π‘œ -variate polynomials over β„€ π‘ž 𝑄 π‘œ Γ— 𝐸 ↦ 𝑄 PRF 𝐺: 𝑏, 𝑦 ∈ β„€ π‘ž 𝑦 𝑏 thm: linearly independent polynomial (lip) security π‘œ 𝑏 ∈ β„€ π‘ž standard assumption 𝑄 𝑄 β‰ˆ 𝑑 Real Rand [𝑄( 𝑏)] $ where the polynomials queried are lin. ind. 11/22

  27. This talk thm: linearly independent polynomial (lip) security π‘œ 𝑏 ∈ β„€ π‘ž DDH 𝑄 𝑄 β‰ˆ 𝑑 Real Rand [𝑄( 𝑏)] $ where the polynomials queried are lin. ind. + multilinear 12/22

  28. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 13/22

  29. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 [1] 13/22

  30. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 [1] [1] [𝑏 1 ] 13/22

  31. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 [1] [1] [𝑏 1 ] [1] 𝑏 2 [𝑏 1 ] 𝑏 1 𝑏 2 13/22

  32. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 [1] [1] [𝑏 1 ] [1] 𝑏 2 [𝑏 1 ] 𝑏 1 𝑏 2 [1] [𝑏 3 ] [𝑏 2 ] [𝑏 2 𝑏 3 ] [𝑏 1 ] [𝑏 1 𝑏 3 ] [𝑏 1 𝑏 2 ] [𝑏 1 𝑏 2 𝑏 3 ] 13/22

  33. simple case: - π‘œ = 3 𝑦 3 | 𝑦 ∈ 0,1 3 } 𝑦 1 π‘ˆ 𝑦 2 π‘ˆ - only monomials queried: 𝑄 ∈ {π‘ˆ 1 2 3 οƒž computation of 𝑄 as a path through a binary tree 𝑏 [1] [1] [𝑏 1 ] [1] 𝑏 2 [𝑏 1 ] 𝑏 1 𝑏 2 [1] [𝑏 3 ] [𝑏 2 ] [𝑏 2 𝑏 3 ] [𝑏 1 ] [𝑏 1 𝑏 3 ] [𝑏 1 𝑏 2 ] [𝑏 1 𝑏 2 𝑏 3 ] π‘ˆ 1 π‘ˆ 3 13/22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend