algebraic cycles in generalized cohomology theories
play

Algebraic cycles in generalized cohomology theories Mathematisches - PowerPoint PPT Presentation

Algebraic cycles in generalized cohomology theories Mathematisches Forschungsinstitut Oberwolfach April 20, 2018 Gereon Quick NTNU Lefschetz s theorem: X projective complex surface Lefschetz s theorem: X projective complex surface


  1. 𝜍 Sm C Man C Topological realization: X(C) X ”complex e.g. P 1 P 1 (C)=CP 1 ≃ S 2 manifold of motivic induced map solutions in C” top. real. spectrum 𝜍 E E a,b (X) E a (X(C)) mot top “algebraic” “topological” Questions: How can we detect whether classes

  2. 𝜍 Sm C Man C Topological realization: X(C) X ”complex e.g. P 1 P 1 (C)=CP 1 ≃ S 2 manifold of motivic induced map solutions in C” top. real. spectrum 𝜍 E E a,b (X) E a (X(C)) mot top “algebraic” “topological” Questions: How can we detect whether classes • in E* , *(X) are topologically trivial, mot i.e., become 0 in E* (X(C))? top

  3. 𝜍 Sm C Man C Topological realization: X(C) X ”complex e.g. P 1 P 1 (C)=CP 1 ≃ S 2 manifold of motivic induced map solutions in C” top. real. spectrum 𝜍 E E a,b (X) E a (X(C)) mot top “algebraic” “topological” Questions: How can we detect whether classes • in E* , *(X) are topologically trivial, mot i.e., become 0 in E* (X(C))? top • in are algebraic, E* (X(C)) top i.e., are in the image of 𝜍 E ?

  4. Atiyah-Hirzebruch, Totaro, Levine-Morel: 𝜍 H =cl H CH*(X)=H 2 * , *(X;Z) Alg 2 *(X) ⊆ H 2 *(X;Z) mot H

  5. Atiyah-Hirzebruch, Totaro, Levine-Morel: universal oriented 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) theories 𝜍 H =cl H CH*(X)=H 2 * , *(X;Z) Alg 2 *(X) ⊆ H 2 *(X;Z) mot H

  6. Atiyah-Hirzebruch, Totaro, Levine-Morel: universal oriented 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) theories coeff. ring = Lazard MGL 2 * , *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z ring 𝜍 H =cl H CH*(X)=H 2 * , *(X;Z) Alg 2 *(X) ⊆ H 2 *(X;Z) mot H

  7. Atiyah-Hirzebruch, Totaro, Levine-Morel: universal oriented 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) theories coeff. ring = Lazard MGL 2 * , *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z ring Totaro ⟳ 𝜍 H =cl H CH*(X)=H 2 * , *(X;Z) Alg 2 *(X) ⊆ H 2 *(X;Z) mot H

  8. Atiyah-Hirzebruch, Totaro, Levine-Morel: universal oriented 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) theories coeff. ring = Lazard MGL 2 * , *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z ring Levine + Totaro Levine-Morel ≈ ⟳ 𝜍 H =cl H CH*(X)=H 2 * , *(X;Z) Alg 2 *(X) ⊆ H 2 *(X;Z) mot H

  9. Atiyah-Hirzebruch, Totaro, Levine-Morel: universal oriented 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) theories coeff. ring = Lazard MGL 2 * , *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z ring Levine + ≉ in general Totaro Levine-Morel ≈ ⟳ 𝜍 H =cl H CH*(X)=H 2 * , *(X;Z) Alg 2 *(X) ⊆ H 2 *(X;Z) mot H

  10. Atiyah-Hirzebruch, Totaro, Levine-Morel: universal oriented 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) theories coeff. ring = Lazard MGL 2 * , *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z ring Levine + ≉ in general Totaro Levine-Morel ≈ ⟳ 𝜍 H =cl H CH*(X)=H 2 * , *(X;Z) Alg 2 *(X) ⊆ H 2 *(X;Z) mot H • Atiyah-Hirzebruch: cl H is not surjective onto integral Hodge classes.

  11. Atiyah-Hirzebruch, Totaro, Levine-Morel: universal oriented 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) theories coeff. ring = Lazard MGL 2 * , *(X) ⊗ L* Z MU 2 *(X) ⊗ L* Z ring Levine + ≉ in general Totaro Levine-Morel ≈ ⟳ 𝜍 H =cl H CH*(X)=H 2 * , *(X;Z) Alg 2 *(X) ⊆ H 2 *(X;Z) mot H • Atiyah-Hirzebruch: cl H is not surjective onto integral Hodge classes. • Totaro: new classes in kernel of cl H .

  12. I. Kernel: X smooth projective

  13. I. Kernel: X smooth projective Recall Deligne’ s diagram 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D

  14. I. Kernel: X smooth projective Recall Deligne’ s diagram 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Hodge classes

  15. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Hodge classes

  16. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Griffiths’ Hodge Jacobian classes

  17. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology CH p (X) cl HD cl H 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Griffiths’ Hodge Jacobian classes

  18. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology Kernel of cl H ⊂ CH p (X) Abel- cl HD µ H cl H Jacobi map 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Griffiths’ Hodge Jacobian classes

  19. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology Kernel of cl H ⊂ CH p (X) Abel- cl HD µ H cl H Jacobi map 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Griffiths’ Hodge Jacobian classes Generalized Hodge filtered cohomology theories (joint work with Mike Hopkins):

  20. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology Kernel of cl H ⊂ CH p (X) Abel- cl HD µ H cl H Jacobi map 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Griffiths’ Hodge Jacobian classes Generalized Hodge filtered cohomology theories (joint work with Mike Hopkins): 0 → J 2p-1 (X) → MU 2p (X;Z(p)) → Hdg 2p (X) → 0 D MU MU

  21. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology Kernel of cl H ⊂ CH p (X) Abel- cl HD µ H cl H Jacobi map 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Griffiths’ Hodge Jacobian classes Generalized Hodge filtered cohomology theories (joint work with Mike Hopkins): MU-Hodge classes 0 → J 2p-1 (X) → MU 2p (X;Z(p)) → Hdg 2p (X) → 0 D MU MU

  22. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology Kernel of cl H ⊂ CH p (X) Abel- cl HD µ H cl H Jacobi map 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Griffiths’ Hodge Jacobian classes Generalized Hodge filtered cohomology theories (joint work with Mike Hopkins): MU-Hodge classes 0 → J 2p-1 (X) → MU 2p (X;Z(p)) → Hdg 2p (X) → 0 D MU MU ”Hodge filtered complex cobordism”

  23. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology Kernel of cl H ⊂ CH p (X) Abel- cl HD µ H cl H Jacobi map 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Griffiths’ Hodge Jacobian classes Generalized Hodge filtered cohomology theories (joint work with Mike Hopkins): MU-Hodge classes 0 → J 2p-1 (X) → MU 2p (X;Z(p)) → Hdg 2p (X) → 0 D MU MU ”Hodge filtered MU-“Jacobian” complex cobordism”

  24. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology Kernel of cl H ⊂ CH p (X) Abel- cl HD µ H cl H Jacobi map 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Griffiths’ Hodge Jacobian classes Generalized Hodge filtered cohomology theories (joint work with Mike Hopkins): MU-Hodge MGL 2p,p (X) classes 𝜍 MU 𝜍 MUD 0 → J 2p-1 (X) → MU 2p (X;Z(p)) → Hdg 2p (X) → 0 D MU MU ”Hodge filtered MU-“Jacobian” complex cobordism”

  25. I. Kernel: X smooth projective Deligne Recall Deligne’ s diagram cohomology Kernel of cl H ⊂ CH p (X) Abel- cl HD µ H cl H Jacobi map 0 → J 2p-1 (X) → H 2p (X;Z(p)) → Hdg 2p (X) → 0 D Griffiths’ Hodge Jacobian classes Generalized Hodge filtered cohomology theories (joint work with Mike Hopkins): MU-Hodge ”Abel- Kernel of 𝜍 MU ⊂ MGL 2p,p (X) classes Jacobi 𝜍 MU 𝜍 MUD µ MU map” 0 → J 2p-1 (X) → MU 2p (X;Z(p)) → Hdg 2p (X) → 0 D MU MU ”Hodge filtered MU-“Jacobian” complex cobordism”

  26. Examples: The new Abel-Jacobi map is able to detect interesting algebraic cobordism classes: MGL 2p,p (X) motivic Thom map top. realization Abel-Jacobi map for MU 2p,p 2p-1 H mot (X;Z) J MU (X) MU 2p (X(C))

  27. Examples: The new Abel-Jacobi map is able to detect interesting algebraic cobordism classes: there is an α ∊ MGL 2p,p (X) motivic Thom map top. realization Abel-Jacobi map for MU 2p,p 2p-1 H mot (X;Z) J MU (X) MU 2p (X(C))

  28. Examples: The new Abel-Jacobi map is able to detect interesting algebraic cobordism classes: there is an α ∊ MGL 2p,p (X) motivic Thom map top. realization Abel-Jacobi map for MU hence 0 0 in J 2p-1 (X) 2p,p 2p-1 H mot (X;Z) J MU (X) MU 2p (X(C))

  29. Examples: The new Abel-Jacobi map is able to detect interesting algebraic cobordism classes: there is an α ∊ MGL 2p,p (X) motivic Thom map top. realization Abel-Jacobi map for MU hence 0 0 0 in J 2p-1 (X) 2p,p 2p-1 H mot (X;Z) J MU (X) MU 2p (X(C))

  30. Examples: The new Abel-Jacobi map is able to detect interesting algebraic cobordism classes: there is an α ∊ MGL 2p,p (X) motivic Thom map top. realization Abel-Jacobi map for MU hence 0 0 ≠ 0 0 in J 2p-1 (X) 2p,p 2p-1 H mot (X;Z) J MU (X) MU 2p (X(C))

  31. In concrete terms: Given p and X smooth projective. 2p Elements in MU D (p)(X) consist of triples (f, h, ω ):

  32. In concrete terms: Given p and X smooth projective. 2p Elements in MU D (p)(X) consist of triples (f, h, ω ): (almost) complex manifold ∋ f : Y → X MU 2p (X) proper

  33. In concrete terms: Given p and X smooth projective. 2p Elements in MU D (p)(X) consist of triples (f, h, ω ): (almost) complex manifold ∋ f : Y → X MU 2p (X) proper ω ∈ F p Ω *(X;V*) 2p cl closed forms of total degree 2p V*=MU* ⊗ C

  34. In concrete terms: Given p and X smooth projective. 2p Elements in MU D (p)(X) consist of triples (f, h, ω ): (almost) complex manifold ∋ f : Y → X MU 2p (X) proper ω ∈ F p Ω *(X;V*) 2p cl closed forms of C*(X;V*) 2p-1 ∋ h total degree 2p V*=MU* ⊗ C

  35. In concrete terms: Given p and X smooth projective. 2p Elements in MU D (p)(X) consist of triples (f, h, ω ): (almost) complex manifold ∋ f : Y → X MU 2p (X) proper ω ∈ F p Ω *(X;V*) 2p Z*(X;V*) 2p cocycles of cl total degree 2p closed forms of C*(X;V*) 2p-1 ∋ h total degree 2p V*=MU* ⊗ C

  36. In concrete terms: Given p and X smooth projective. 2p Elements in MU D (p)(X) consist of triples (f, h, ω ): (almost) complex manifold ∋ f : Y → X MU 2p (X) proper ω ∈ F p Ω *(X;V*) 2p Z*(X;V*) 2p cocycles of cl total degree 2p f closed forms of C*(X;V*) 2p-1 ∋ h total degree 2p V*=MU* ⊗ C

  37. In concrete terms: Given p and X smooth projective. 2p Elements in MU D (p)(X) consist of triples (f, h, ω ): (almost) complex manifold ∋ f : Y → X MU 2p (X) proper ω ∈ F p Ω *(X;V*) 2p Z*(X;V*) 2p cocycles of cl total degree 2p ω f closed forms of C*(X;V*) 2p-1 ∋ h total degree 2p V*=MU* ⊗ C

  38. In concrete terms: Given p and X smooth projective. 2p Elements in MU D (p)(X) consist of triples (f, h, ω ): (almost) complex manifold ∋ f : Y → X MU 2p (X) proper ω ∈ F p Ω *(X;V*) 2p Z*(X;V*) 2p cocycles of cl total degree 2p ω - f = ∂ h closed forms of C*(X;V*) 2p-1 ∋ h total degree 2p V*=MU* ⊗ C

  39. In concrete terms: Given p and X smooth projective. 2p Elements in MU D (p)(X) consist of triples (f, h, ω ): (almost) complex “f ∗ of universal genus of manifold curvature form” of normal ∋ f : Y → X MU 2p (X) bundle of Y if Y is a proper smooth projective variety ω ∈ F p Ω *(X;V*) 2p Z*(X;V*) 2p cocycles of cl total degree 2p ω - f = ∂ h closed forms of C*(X;V*) 2p-1 ∋ h total degree 2p V*=MU* ⊗ C

  40. Arakelov algebraic cobordism:

  41. Arakelov algebraic cobordism: Let S be a scheme of finite type over Z, and let 𝜃 be the generic point.

  42. Arakelov algebraic cobordism: Let S be a scheme of finite type over Z, and let 𝜃 be the generic point. MGL S → 𝜃 ( MU D ) *

  43. Arakelov algebraic cobordism: Let S be a scheme of finite type over Z, and let 𝜃 be the generic point. MGL Arakelov → MGL S → 𝜃 ( MU D ) * homotopy fibre represents “Arakelov algebraic cobordism”

  44. Arakelov algebraic cobordism: Let S be a scheme of finite type over Z, and let 𝜃 be the generic point. MGL Arakelov → MGL S → 𝜃 ( MU D ) * homotopy fibre represents “Arakelov algebraic cobordism” Question: What is the arithmetic-geometric information encoded in the Chern classes in Arakelov algebraic cobordism?

  45. 𝜍 Sm Man Recall: II. Image: X(C) X manifold of solutions in C motivic induced map spectrum 𝜍 E E a,b (X) E a (X(C)) mot top algebraic topological

  46. 𝜍 Sm Man Recall: II. Image: X(C) X manifold of solutions in C motivic induced map spectrum 𝜍 E E a,b (X) E a (X(C)) mot top algebraic topological Question: • How can we detect whether classes in E* (X(C)) are algebraic, i.e., top are in the image of 𝜍 E ?

  47. 𝜍 Sm Man Recall: II. Image: X(C) X manifold of solutions in C motivic induced map spectrum 𝜍 E E a,b (X) E a (X(C)) mot top algebraic topological Question: • How can we detect whether classes in E* (X(C)) are algebraic, i.e., not top not are in the image of 𝜍 E ?

  48. 𝜍 Sm Man Recall: II. Image: X(C) X manifold of solutions in C motivic induced map spectrum 𝜍 E E a,b (X) E a (X(C)) mot top algebraic topological Question: • How can we detect whether classes in E* (X(C)) are algebraic, i.e., not top not are in the image of 𝜍 E ? • How can we construct such classes?

  49. A different perspective: Fix a prime p.

  50. A different perspective: Brown-Peterson, Fix a prime p. Quillen |v i |=2(p i -1) MU (p) splits as a wedge of suspensions of spectra BP with BP = Z (p) [v 1 ,v 2 ,…]. *

  51. A different perspective: Brown-Peterson, Fix a prime p. Quillen |v i |=2(p i -1) MU (p) splits as a wedge of suspensions of spectra BP with BP = Z (p) [v 1 ,v 2 ,…]. * quotient map BP BP/(v n+1 ,…) =: BP ⟨ n ⟩ For every n: with BP ⟨ n ⟩ = Z (p) [v 1 ,…,v n ] *

  52. A different perspective: Brown-Peterson, Fix a prime p. Quillen |v i |=2(p i -1) MU (p) splits as a wedge of suspensions of spectra BP with BP = Z (p) [v 1 ,v 2 ,…]. * quotient map BP BP/(v n+1 ,…) =: BP ⟨ n ⟩ For every n: with BP ⟨ n ⟩ = Z (p) [v 1 ,…,v n ] * The Brown-Peterson tower (Wilson): … … BP BP ⟨ n ⟩ BP ⟨ 1 ⟩ BP ⟨ 0 ⟩ BP ⟨ -1 ⟩ p=2: 2-local HZ (p) HF p connective K-theory

  53. Milnor operations:

  54. Milnor operations: For every n: stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑

  55. Milnor operations: For every n: stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ with an induced exact sequence (for any space X) +|v n | BP ⟨ n ⟩ * (X) BP ⟨ n ⟩ *(X) q n BP ⟨ n ⟩ * +|v n |+1 (X) BP ⟨ n-1 ⟩ *(X)

  56. Milnor operations: For every n: stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ with an induced exact sequence (for any space X) +|v n | BP ⟨ n ⟩ * (X) BP ⟨ n ⟩ *(X) q n BP ⟨ n ⟩ * +|v n |+1 (X) BP ⟨ n-1 ⟩ *(X) BP ⟨ n-1 ⟩ Thom map +|v n |+1 (X;F p ) HF p H*(X;F p ) H* Q n

  57. Milnor operations: For every n: stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ with an induced exact sequence (for any space X) +|v n | BP ⟨ n ⟩ * (X) BP ⟨ n ⟩ *(X) q n BP ⟨ n ⟩ * +|v n |+1 (X) BP ⟨ n-1 ⟩ *(X) BP ⟨ n-1 ⟩ nth Milnor Thom operation: map Q 0 =Bockstein p n-1 p n-1 +|v n |+1 (X;F p ) Q n =P Q n-1 -Q n-1 P HF p H*(X;F p ) H* Q n

  58. The LMT obstruction in action: BP 2 *(X) ⟲ q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Q n

  59. The LMT obstruction in action: BP 2 *(X) ⟲ q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Q n 𝝱

  60. The LMT obstruction in action: BP 2 *(X) ⟲ q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Q n 𝝱 Question: Is 𝝱 algebraic?

  61. The LMT obstruction in action: BP 2 *(X) ⟲ q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n 𝝱 Question: Is 𝝱 algebraic?

  62. The LMT obstruction in action: BP 2 *(X) LMT ⟲ q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n 𝝱 Question: Is 𝝱 algebraic?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend