advanced algorithms
play

Advanced Algorithms LP-based Algorithms LP rounding: Relax the - PowerPoint PPT Presentation

Advanced Algorithms LP-based Algorithms LP rounding: Relax the integer program to LP; round the optimal LP solution to a nearby feasible integral solution. The primal-dual schema: Find a pair of


  1. Advanced Algorithms 南京大学 尹一通

  2. LP-based Algorithms • LP rounding: • Relax the integer program to LP; • round the optimal LP solution to a nearby feasible integral solution. • The primal-dual schema: • Find a pair of solutions to the primal and dual programs which are close to each other.

  3. Vertex Cover Instance : An undirected graph G ( V,E ) Find the smallest C ⊆ V that every edge has at least one endpoint in C . e 1 e 2 v 1 v 1 v 2 e 2 e 3 e 1 v 2 e 3 v 3 e 5 e 6 v 3 e 4 e 4 incidence graph v 4 e 5 v 4 e 6 instance of set cover with frequency =2

  4. Instance : An undirected graph G ( V,E ) Find the smallest C ⊆ V that every edge has at least one endpoint in C . Find a maximal matching M ; return the set C ={ v : uv ∈ M } of matched vertices; maximality C is vertex cover e 1 v 1 e 2 matching | M | ≤ OPT VC v 2 e 3 ( weak duality ) v 3 e 4 v 4 e 5 | C | ≤ 2| M | ≤ 2OPT e 6

  5. Duality e 1 v 1 e 2 v 2 e 3 v 3 e 4 v 4 e 5 e 6 constraints variables vertex cover: ∑ v ∈ e x v ≥ 1 x v ∈ {0,1} variables constraints matching: y e ∈ {0,1} ∑ e ∋ v y e ≤ 1

  6. Duality Instance : graph G ( V , E ) primal: X minimize x v v ∈ V X subject to x v ≥ 1 , ∀ e ∈ E vertex v ∈ e covers x v ∈ { 0 , 1 } , ∀ v ∈ V dual: X maximize y e e ∈ E X subject to y v ≤ 1 , ∀ v ∈ V matchings e 3 v y e ∈ { 0 , 1 } , ∀ e ∈ E

  7. Duality for LP-Relaxation Instance : graph G ( V , E ) primal: X minimize x v v ∈ V X subject to x v ≥ 1 , ∀ e ∈ E v ∈ e x v ≥ 0 , ∀ v ∈ V dual: X maximize y e e ∈ E X subject to y v ≤ 1 , ∀ v ∈ V e 3 v y e ≥ 0 , ∀ e ∈ E

  8. Estimate the Optima minimize 7 x 1 + + 5 x 3 x 2 ≤ subject to + 3 x 3 10 − ≥ x 1 x 2 + + 5 x 1 + 2 x 2 6 − ≥ x 3 = 16 x 1 , x 2 , x 3 ≥ 0 ≤ OPT ≤ any feasible solution 16

  9. Estimate the Optima minimize 7 x 1 + + 5 x 3 x 2 ≤ subject to y 1 y 1 + 3 x 3 10 − ≥ x 1 x 2 + + 5 x 1 + 2 x 2 6 − ≥ y 2 y 2 x 3 x 1 , x 2 , x 3 ≥ 0 ≤ OPT 10 y 1 + 6 y 2 for any + 5 y 2 7 ≤ y 1 y 1 , y 2 ≥ 0 + 2 y 2 1 − y 1 ≤ 3 y 1 5 − ≤ y 2

  10. Primal-Dual Primal min 7 x 1 + + 5 x 3 x 2 s.t. + 3 x 3 10 − ≥ x 1 x 2 5 x 1 + 2 x 2 6 − ≥ x 3 x 1 , x 2 , x 3 ≥ 0 Dual max ∀ dual feasible 10 y 1 + 6 y 2 ≤ primal OPT s.t. + 5 y 2 7 ≤ y 1 + 2 y 2 1 − y 1 ≤ LP ∈ NP ∩ co NP 3 y 1 5 − ≤ y 2 y 1 , y 2 ≥ 0

  11. Surviving Problem price healthy c 1 c 2 c n vitamin 1 ≥ b 1 a 11 a 12 a 1 n vitamin m a m 1 a m 2 a mn ≥ b m solution: x 1 x 2 x n minimize the total price while keeping healthy

  12. Surviving Problem min c T x s.t. A x ≥ b x ≥ 0 price healthy c 1 c 2 c n vitamin 1 ≥ b 1 a 11 a 12 a 1 n vitamin m a m 1 a m 2 a mn ≥ b m solution: x 1 x 2 x n minimize the total price while keeping healthy

  13. LP Duality Primal: Dual: min c T x max b T y s.t. s.t. A x ≥ b y T A ≤ c T y ≥ 0 x ≥ 0 dual price solution: healthy c 1 c 2 c n vitamin 1 y 1 b 1 a 11 a 12 a 1 n vitamin m y m a m 1 a m 2 a mn b m design a pricing system m types of vitamin pills, max the total price competitive to n natural foods,

  14. LP Duality Primal: Dual: min c T x max b T y ≥ s.t. y T A ≤ c T s.t. A x ≥ b x ≥ 0 y ≥ 0 Monogamy: dual(dual(LP)) = LP Weak Duality: ∀ feasible primal solution x and dual solution y y T b ≤ y T A ≤ c T x x

  15. LP Duality Primal: Dual: min c T x max b T y ≥ s.t. s.t. y T A ≤ c T A x ≥ b x ≥ 0 y ≥ 0 Weak Duality Theorem : ∀ feasible primal solution x and dual solution y y T b ≤ c T x

  16. LP Duality Primal: Dual: min c T x max b T y s.t. s.t. y T A ≤ c T A x ≥ b x ≥ 0 y ≥ 0 Strong Duality Theorem : Primal LP has finite optimal solution x * iff dual LP has finite optimal solution y * . y * T b = c T x *

  17. Dual: max b T y Primal: min c T x s.t. y T A ≤ c T s.t. A x ≥ b y ≥ 0 x ≥ 0 ∀ feasible primal solution x and dual solution y y T b ≤ y T A x ≤ c T x x and y are both optimal iff Strong Duality Theorem y T b = y T A x = c T x 0 1 m m n X X X A y i b i y i = a ij x j @ ∀ i : either A i · x = b i or y i = 0 i =1 i =1 j =1 m ! n n ∀ j : either y T A · j = c j or x j = 0 X X X c j x j = a ij y i x j j =1 j =1 i =1

  18. Complementary Slackness Dual: max b T y Primal: min c T x s.t. y T A ≤ c T s.t. A x ≥ b y ≥ 0 x ≥ 0 Complementary Slackness Conditions: ∀ feasible primal solution x and dual solution y x and y are both optimal iff ∀ i : either A i · x = b i or y i = 0 ∀ j : either y T A · j = c j or x j = 0

  19. Relaxed Complementary Slackness Dual: max b T y Primal: min c T x s.t. y T A ≤ c T s.t. A x ≥ b y ≥ 0 x ≥ 0 ∀ feasible primal solution x and dual solution y for α , β ≥ 1: ∀ i : either A i · x ≤ α b i or y i = 0 ∀ j : either y T A · j ≥ c j / β or x j = 0 c T x ≤ αβ b T y ≤ αβ OPT LP 0 1 ! n n m m m n X X X X X X β c j x j ≤ x j = β A y j ≤ αβ b i y i a ij y i a ij x i @ i =1 j =1 j =1 j =1 i =1 i =1

  20. Primal-Dual Schema Dual LP-relax: max b T y min c T x Primal IP: s.t. y T A ≤ c T s.t. A x ≥ b x ∈ ℤ ≥ 0 y ≥ 0 Find a primal integral solution x and a dual solution y for α , β ≥ 1: ∀ i : either A i · x ≤ α b i or y i = 0 ∀ j : either y T A · j ≥ c j / β or x j = 0 ≤ αβ OPT IP c T x ≤ αβ b T y ≤ αβ OPT LP

  21. e 1 primal: min X x v v 1 v ∈ V e 2 s.t. X x v ≥ 1 , ∀ e ∈ E v 2 e 3 v ∈ e x v ∈ { 0 , 1 } , ∀ v ∈ V v 3 e 4 v 4 dual-relax: min e 5 X y e e ∈ E e 6 s.t. X y e ≤ 1 , ∀ v ∈ V vertex cover: e 3 v constraints variables y e ≥ 0 , ∀ e ∈ E ∑ v ∈ e x v ≥ 1 x v ∈ {0,1} feasible ( x , y ) such that: matching: ∀ e : y e > 0 ⟹ ∑ v ∈ e x v ≤ α variables constraints ∀ v : x v = 1 ⟹ ∑ e ∋ v y e = 1 y e ∈ {0,1} ∑ e ∋ v y e ≤ 1

  22. primal: dual-relax: min X min X y e x v e ∈ E v ∈ V s.t. X s.t. y e ≤ 1 , ∀ v ∈ V X x v ≥ 1 , ∀ e ∈ E e 3 v v ∈ e y e ≥ 0 , ∀ e ∈ E x v ∈ { 0 , 1 } , ∀ v ∈ V event: “ v is tight ( saturated )” ∑ e ∋ v y e = 1 Initially x = 0 , y = 0 ; while E ≠ ∅ to 1 pick an e ∈ E and raise y e until some v goes tight; set x v = 1 for those tight v and delete all e ∋ v from E ; v ∈ e every deleted e is incident to a v that x v = 1 ∀ e ∈ E : ∑ v ∈ e x v ≥ 1 o all edges are eventually deleted x is feasible relaxed ∀ e : either ∑ v ∈ e x v ≤ 2 or y e = 0 X x v ≤ 2 · OPT complementary ∀ v : either ∑ e ∋ v y e = 1 or x v = 0 slackness : v ∈ V

  23. Initially x = 0 , y = 0 ; while E ≠ ∅ to 1 pick an e ∈ E and raise y e until some v goes tight; set x v = 1 for those tight v and delete all e ∋ v from E ; v ∈ e Find a maximal matching ; return the set of matched vertices; the returned set is a vertex cover SOL ≤ 2 OPT

  24. The Primal-Dual Schema • Write down an LP-relaxation and its dual. min c T x max b T y s.t. A x ≥ b s.t. y T A ≤ c T x ∈ ℤ ≥ 0 y ≥ 0 • Start with a primal infeasible solution x and a dual feasible solution y (usually x = 0 , y = 0 ). • Raise x and y until x is feasible: • raise y until some dual constraints gets tight y T A · j = c j ; • raise x j (integrally) corresponding to the tight dual constraints. • Show the complementary slackness conditions : ∀ i : either A i · x ≤ α b i or y i = 0 c T x ≤ αβ b T y ∀ j : either y T A · j ≥ c j / β or x j = 0 ≤ αβ OPT

  25. Integrality Gap LP relaxation of vertex cover : given G ( V , E ) , ∑ v ∈ V x v minimize subject to e ∈ E ∑ v ∈ e x v ≥ 1, v ∈ V x v ∈ {0, 1}, x v ∈ [0, 1], OPT( I ) Integrality gap = sup OPT LP ( I ) I For the LP relaxation of vertex cover: integrality gap = 2

  26. Facility Location hospitals in Nanjing

  27. Facility Location f i … … facilities: i … … … … c ij … … … … … … clients: j Instance : set F of facilities; set C of clients; facility opening costs f : F → [0, ∞ ) ; connection costs c : F × C → [0, ∞ ) ; Find a subset I ⊆ F of opening facilities and a way φ : C → I of connecting all clients to them such that the total cost is minimized. X X c φ ( j ) ,j + f i j ∈ C i ∈ I • uncapacitated facility location; • NP -hard ; AP( Approximation Preserving )-reduction from Set Cover; • [Dinur, Steuer 2014] no poly-time (1-o(1))ln n -approx. algorithm unless NP = P .

  28. Metric Facility Location … f i … facilities: i … … … … d ij … … … … … … clients: j Instance : set F of facilities; set C of clients; facility opening costs f : F → [0, ∞ ) ; connection metric d : F × C → [0, ∞ ) ; Find a subset I ⊆ F of opening facilities and a way φ : C → I of connecting all clients to them such that the total cost is minimized. X X d φ ( j ) ,j + f i j ∈ C i ∈ I i 1 i 2 triangle inequality: ∀ i 1 , i 2 ∈ F, ∀ j 1 , j 2 ∈ C d i 1 j 1 + d i 2 j 1 + d i 2 j 2 ≥ d i 1 j 2 j 2 j 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend