adaptive bisection of numerical csps
play

Adaptive Bisection of Numerical CSPs Laurent Granvilliers Univ. - PowerPoint PPT Presentation

Adaptive Bisection of Numerical CSPs Laurent Granvilliers Univ. Nantes, Lab. Computer Science, France L. Granvilliers (Nantes) Adaptive Bisection CP 2012 1 / 10 Bisection Algorithm Goal : Solving numerical CSPs using interval computations. x


  1. Adaptive Bisection of Numerical CSPs Laurent Granvilliers Univ. Nantes, Lab. Computer Science, France L. Granvilliers (Nantes) Adaptive Bisection CP 2012 1 / 10

  2. Bisection Algorithm Goal : Solving numerical CSPs using interval computations. x 2 x 1 ( x 2 1 + x 2 2 ) = 6 x 2  2  ( x 1 − 0 . 25) 2 + x 2 2 = 4 ( x 1 , x 2 ) ∈ x 1 × x 2  x 1 x = x 1 × x 2 L. Granvilliers (Nantes) Adaptive Bisection CP 2012 2 / 10

  3. Bisection Algorithm Goal : Solving numerical CSPs using interval computations. x 2 x 1 ( x 2 1 + x 2 2 ) = 6 x 2  2  ( x 1 − 0 . 25) 2 + x 2 2 = 4 ( x 1 , x 2 ) ∈ x 1 × x 2  • Contract x → x ′ x 1 x ′ L. Granvilliers (Nantes) Adaptive Bisection CP 2012 2 / 10

  4. Bisection Algorithm Goal : Solving numerical CSPs using interval computations. x 2 x 1 ( x 2 1 + x 2 2 ) = 6 x 2  2  ( x 1 − 0 . 25) 2 + x 2 2 = 4 ( x 1 , x 2 ) ∈ x 1 × x 2  • Contract x → x ′ x 1 • Select x 2 • Bisect x ′ along x 2 x ′ L. Granvilliers (Nantes) Adaptive Bisection CP 2012 2 / 10

  5. Bisection Algorithm Goal : Solving numerical CSPs using interval computations. x 2 x 1 ( x 2 1 + x 2 2 ) = 6 x 2  2  ( x 1 − 0 . 25) 2 + x 2 2 = 4 ( x 1 , x 2 ) ∈ x 1 × x 2  • Contract x → x ′ x 1 • Select x 2 • Bisect x ′ along x 2 • Iterate and stop on ǫ -boxes L. Granvilliers (Nantes) Adaptive Bisection CP 2012 2 / 10

  6. MaxDom Strategy Let f ( x 1 , x 2 ) = x 1 ( x 2 1 + x 2 2 ) − 6 x 2 2 be the function defining the cissoid. Let x = [2 , 4] × [0 , 1] and evaluate the natural extension of f : f ( x ) = [2 , 4] ([2 , 4] 2 + [0 , 1] 2 ) − 6 [0 , 1] 2 = [2 , 68] L. Granvilliers (Nantes) Adaptive Bisection CP 2012 3 / 10

  7. MaxDom Strategy Let f ( x 1 , x 2 ) = x 1 ( x 2 1 + x 2 2 ) − 6 x 2 2 be the function defining the cissoid. Let x = [2 , 4] × [0 , 1] and evaluate the natural extension of f : f ( x ) = [2 , 4] ([2 , 4] 2 + [0 , 1] 2 ) − 6 [0 , 1] 2 = [2 , 68] Bisect x 1 Bisect x 2 f ([2 , 3] , x 2 ) = [2 , 30] f ( x 1 , [0 , 0 . 5]) = [6 . 5 , 65] f ([3 , 4] , x 2 ) = [21 , 68] f ( x 1 , [0 . 5 , 1]) = [2 . 5 , 66 . 5] L. Granvilliers (Nantes) Adaptive Bisection CP 2012 3 / 10

  8. MaxDom Strategy Let f ( x 1 , x 2 ) = x 1 ( x 2 1 + x 2 2 ) − 6 x 2 2 be the function defining the cissoid. Let x = [2 , 4] × [0 , 1] and evaluate the natural extension of f : f ( x ) = [2 , 4] ([2 , 4] 2 + [0 , 1] 2 ) − 6 [0 , 1] 2 = [2 , 68] Bisect x 1 Bisect x 2 f ([2 , 3] , x 2 ) = [2 , 30] f ( x 1 , [0 , 0 . 5]) = [6 . 5 , 65] f ([3 , 4] , x 2 ) = [21 , 68] f ( x 1 , [0 . 5 , 1]) = [2 . 5 , 66 . 5] MaxDom : bisecting the largest domain reduces overestimation in interval computations = ⇒ more contraction using local consistency L. Granvilliers (Nantes) Adaptive Bisection CP 2012 3 / 10

  9. MaxSmear Strategy Let x = [0 . 5 , 1] × [0 . 5 , 1] and evaluate the derivatives of f : ∇ f ( x ) = ([1 , 4] , [ − 11 . 5 , − 4]) L. Granvilliers (Nantes) Adaptive Bisection CP 2012 4 / 10

  10. MaxSmear Strategy Let x = [0 . 5 , 1] × [0 . 5 , 1] and evaluate the derivatives of f : ∇ f ( x ) = ([1 , 4] , [ − 11 . 5 , − 4]) Let c be the midpoint of x and evaluate the mean value extension of f : f ( x , c ) = f ( c ) + ∇ f ( x )( x − c ) = [ − 6 . 5 , 1 . 4] L. Granvilliers (Nantes) Adaptive Bisection CP 2012 4 / 10

  11. MaxSmear Strategy Let x = [0 . 5 , 1] × [0 . 5 , 1] and evaluate the derivatives of f : ∇ f ( x ) = ([1 , 4] , [ − 11 . 5 , − 4]) Let c be the midpoint of x and evaluate the mean value extension of f : f ( x , c ) = f ( c ) + ∇ f ( x )( x − c ) = [ − 6 . 5 , 1 . 4] Bisect x 1 Bisect x 2 f ([0 . 5 , 0 . 75] , x 2 ) = [ − 6 . 0 , 0 . 5] f ( x 1 , [0 . 75 , 1]) = [ − 6 . 0 , − 1 . 2] f ([0 . 75 , 1 . ] , x 2 ) = [ − 5 . 6 , 1 . 1] f ( x 1 , [0 . 5 , 0 . 75]) = [ − 3 . 6 , 0 . 4] L. Granvilliers (Nantes) Adaptive Bisection CP 2012 4 / 10

  12. MaxSmear Strategy Let x = [0 . 5 , 1] × [0 . 5 , 1] and evaluate the derivatives of f : ∇ f ( x ) = ([1 , 4] , [ − 11 . 5 , − 4]) Let c be the midpoint of x and evaluate the mean value extension of f : f ( x , c ) = f ( c ) + ∇ f ( x )( x − c ) = [ − 6 . 5 , 1 . 4] Bisect x 1 Bisect x 2 f ([0 . 5 , 0 . 75] , x 2 ) = [ − 6 . 0 , 0 . 5] f ( x 1 , [0 . 75 , 1]) = [ − 6 . 0 , − 1 . 2] f ([0 . 75 , 1 . ] , x 2 ) = [ − 5 . 6 , 1 . 1] f ( x 1 , [0 . 5 , 0 . 75]) = [ − 3 . 6 , 0 . 4] MaxSmear : selecting the variable having the maximum smear value produces tighter linear relaxations = ⇒ Newton operator stronger L. Granvilliers (Nantes) Adaptive Bisection CP 2012 4 / 10

  13. RoundRobin Strategy • Total order x i 1 < x i 2 < · · · < x i n – x i < x j if x i occurs more than x j – x i < x j if x i occurs in more constraints than x j – . . . L. Granvilliers (Nantes) Adaptive Bisection CP 2012 5 / 10

  14. RoundRobin Strategy • Total order x i 1 < x i 2 < · · · < x i n – x i < x j if x i occurs more than x j – x i < x j if x i occurs in more constraints than x j – . . . • RoundRobin : select x i 1 , x i 2 , . . . , x i n , x i 1 , x i 2 , . . . x i n , x i 1 , . . . – every domain is regularly bisected – fair strategy L. Granvilliers (Nantes) Adaptive Bisection CP 2012 5 / 10

  15. New Adaptive Strategy • Motivation – robust smear strategy – efficient fair strategy L. Granvilliers (Nantes) Adaptive Bisection CP 2012 6 / 10

  16. New Adaptive Strategy • Motivation – robust smear strategy – efficient fair strategy • Adaptive bisection strategy – diversification ( ≈ RoundRobin) in the early steps of the algorithm – intensification ( ≈ MaxSmear) in the vicinity of solutions L. Granvilliers (Nantes) Adaptive Bisection CP 2012 6 / 10

  17. New Adaptive Strategy • Motivation – robust smear strategy – efficient fair strategy • Adaptive bisection strategy – diversification ( ≈ RoundRobin) in the early steps of the algorithm – intensification ( ≈ MaxSmear) in the vicinity of solutions • GRASP (Feo & Resende 1995) – adaptive search procedure for derivative-free optimization – greedy + randomized L. Granvilliers (Nantes) Adaptive Bisection CP 2012 6 / 10

  18. New Algorithm • Initialization : for every variable ( i = 1 , . . . , n ) – s i ≥ 0 : smear value of x i in x – n i ≥ 0 : number of times x i has been selected – [ s min , s max ] : range of smear values L. Granvilliers (Nantes) Adaptive Bisection CP 2012 7 / 10

  19. New Algorithm • Initialization : for every variable ( i = 1 , . . . , n ) – s i ≥ 0 : smear value of x i in x – n i ≥ 0 : number of times x i has been selected – [ s min , s max ] : range of smear values • Subset of the best variables : let S ∈ [ s min , s max ] and mark every variable x j s.t. s j ≥ S ∧ width( x j ) > ǫ L. Granvilliers (Nantes) Adaptive Bisection CP 2012 7 / 10

  20. New Algorithm • Initialization : for every variable ( i = 1 , . . . , n ) – s i ≥ 0 : smear value of x i in x – n i ≥ 0 : number of times x i has been selected – [ s min , s max ] : range of smear values • Subset of the best variables : let S ∈ [ s min , s max ] and mark every variable x j s.t. s j ≥ S ∧ width( x j ) > ǫ • Fair choice : select a marked variable x k s.t. n k = min { n i : 1 ≤ i ≤ n ∧ x i marked } L. Granvilliers (Nantes) Adaptive Bisection CP 2012 7 / 10

  21. Adaptive Behaviour • Threshold on smear values S = s min + α ( s max − s min ) , 0 ≤ α ≤ 1 – α = 1 = ⇒ greedy – α = 0 = ⇒ fair L. Granvilliers (Nantes) Adaptive Bisection CP 2012 8 / 10

  22. Adaptive Behaviour • Threshold on smear values S = s min + α ( s max − s min ) , 0 ≤ α ≤ 1 – α = 1 = ⇒ greedy – α = 0 = ⇒ fair • Adaptive behaviour 1 α = 1 + βσ , β > 0 – σ : standard deviation of the smear values – σ → 0 = ⇒ α → 1 – σ → ∞ = ⇒ α → 0 L. Granvilliers (Nantes) Adaptive Bisection CP 2012 8 / 10

  23. Experimental Results Problem MaxDom RoundRobin MaxSmear Adaptive n Celestial 3 3 361 2 599 4 258 3 074 Combu. 10 559 463 1 303 509 Neuro 6 1 288 779 7 223 7 215 6 367 Trigo1 10 1 258 2 086 2 071 1 244 Broyden3 20 24 723 23 23 Geineg 6 8 546 8 116 1 707 2 400 Kapur 5 2 791 1 651 231 323 Nbody 8 1 976 2 049 1 532 1 765 Brown 10 12 443 5 850 6 827 4 996 Eco 6 1 108 1 530 1 063 1 023 Nauheim 8 1 204 722 816 708 Transistor 9 112 795 121 765 83 711 42 085 L. Granvilliers (Nantes) Adaptive Bisection CP 2012 9 / 10

  24. Experimental Results Problem MaxDom RoundRobin MaxSmear Adaptive n Celestial 3 3 361 2 599 4 258 3 074 Combu. 10 559 463 1 303 509 Neuro 6 1 288 779 7 223 7 215 6 367 Trigo1 10 1 258 2 086 2 071 1 244 Broyden3 20 24 723 23 23 Geineg 6 8 546 8 116 1 707 2 400 Kapur 5 2 791 1 651 231 323 Nbody 8 1 976 2 049 1 532 1 765 Brown 10 12 443 5 850 6 827 4 996 Eco 6 1 108 1 530 1 063 1 023 Nauheim 8 1 204 722 816 708 Transistor 9 112 795 121 765 83 711 42 085 L. Granvilliers (Nantes) Adaptive Bisection CP 2012 9 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend