actuariat de l assurance non vie 9 a charpentier
play

Actuariat de lAssurance Non-Vie # 9 A. Charpentier (Universit de - PowerPoint PPT Presentation

Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Actuariat de lAssurance Non-Vie # 9 A. Charpentier (Universit de Rennes 1) ENSAE 2017/2018 credit: Arnold Odermatt 1 @freakonometrics freakonometrics


  1. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Actuariat de l’Assurance Non-Vie # 9 A. Charpentier (Université de Rennes 1) ENSAE 2017/2018 credit: Arnold Odermatt 1 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  2. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Fourre-Tout sur la Tarification • modèle collectif vs. modèle individuel • cas de la grande dimension • choix de variables • choix de modèles 2 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  3. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Modèle individuel ou modèle collectif ? La loi Tweedie Consider a Tweedie distribution, with variance function power p ∈ (1 , 2), mean µ and scale parameter φ , then it is a compound Poisson model, • N ∼ P ( λ ) with λ = φµ 2 − p 2 − p p − 1 and β = φµ 1 − p • Y i ∼ G ( α, β ) with α = − p − 2 p − 1 Consversely, consider a compound Poisson model N ∼ P ( λ ) and Y i ∼ G ( α, β ), then • variance function power is p = α + 2 α + 1 • mean is µ = λα β α +2 α +1 − 1 β 2 − α +2 • scale parameter is φ = [ λα ] α +1 α + 1 3 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  4. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Modèle individuel ou modèle collectif ? La régression Tweedie In the context of regression N i ∼ P ( λ i ) with λ i = exp[ X T i β λ ] Y j,i ∼ G ( µ i , φ ) with µ i = exp[ X T i β µ ] Then S i = Y 1 ,i + · · · + Y N,i has a Tweedie distribution • variance function power is p = φ + 2 φ + 1 • mean is λ i µ i � � 1 φ +1 − 1 • scale parameter is λ φ i φ 1 + φ φ +1 µ i There are 1 + 2dim( X ) degrees of freedom. 4 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  5. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Modèle individuel ou modèle collectif ? La régression Tweedie Remark Note that the scale parameter should not depend on i . A Tweedie regression is • variance function power is p ∈ (1 , 2) • mean is µ i = exp[ X T i β Tweedie ] • scale parameter is φ There are 2 + dim( X ) degrees of freedom. 5 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  6. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Double Modèle Fr´ quence - Coût Individuel Considérons les bases suivantes, en RC, pour la fréquence 1 > freq = merge(contrat ,nombre_RC) pour les coûts individuels 1 > sinistre _RC = sinistre [( sinistre $garantie =="1RC")&(sinistre $cout >0) ,] 2 > sinistre _RC = merge(sinistre_RC ,contrat) et pour les co ûts agrégés par police 1 > agg_RC = aggregate (sinistre_RC$cout , by=list(sinistre _RC$nocontrat) , FUN=’sum ’) 2 > names(agg_RC)=c(’nocontrat ’,’cout_RC’) 3 > global_RC = merge(contrat , agg_RC , all.x=TRUE) 4 > global_RC$cout_RC[is.na(global_DO$cout_RC)]=0 6 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  7. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Double Modèle Fr´ quence - Coût Individuel 1 > library(splines) 2 > reg_f = glm(nb_RC~zone+bs( ageconducteur )+carburant , offset=log( exposition ),data=freq ,family=poisson) 3 > reg_c = glm(cout~zone+bs( ageconducteur )+carburant , data=sinistre_RC ,family=Gamma(link="log")) Simple Modèle Coût par Police 1 > library(tweedie) 2 > library(statmod) 3 > reg_a = glm(cout_RC~zone+bs( ageconducteur )+carburant , offset=log( exposition ),data=global_RC ,family=tweedie(var.power =1.5 , link. power =0)) 7 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  8. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Comparaison des primes 1 > freq2 = freq 2 > freq2$ exposition = 1 3 > P_f = predict(reg_f,newdata=freq2 ,type="response") 4 > P_c = predict(reg_c,newdata=freq2 ,type="response") 5 prime1 = P_f*P_c 1 > k = 1.5 2 > reg_a = glm(cout_DO~zone+bs( ageconducteur )+carburant , offset=log( exposition ),data=global_DO ,family=tweedie(var.power=k, link.power =0)) 3 > prime2 = predict(reg_a,newdata=freq2 ,type="response") 1 > arrows (1:100 , prime1 [1:100] ,1:100 , prime2 [1:100] , length =.1) 8 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  9. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Impact du degré Tweedie sur les Primes Pures 800 0.6 600 0.4 400 0.2 200 0.0 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● −0.2 0 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● Tweedie 1 Tweedie 1 9 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  10. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Impact du degré Tweedie sur les Primes Pures Comparaison des primes pures, assurés no1, no2 et no 3 (DO) 10 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  11. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 ‘Optimisation’ du Paramètre Tweedie 1 > dev = function(k){ 2 + reg = glm(cout_RC~zone+bs( ageconducteur )+ carburant , data=global_RC , family= tweedie(var.power=k, link.power =0) , offset=log( exposition)) 3 + reg$deviance 4 + } 11 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  12. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Tarification et données massives ( Big Data ) Problèmes classiques avec des données massives • beaucoup de variables explicatives, k grand, X T X peut-être non inversible • gros volumes de données, e.g. données télématiques • données non quantitatives, e.g. texte, localisation, etc. 12 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  13. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 La fascination pour les estimateurs sans biais En statistique mathématique, on aime les estimateurs sans biais car ils ont plusieurs propriétés intéressantes. Mais ne peut-on pas considérer des estimateurs biaisés, potentiellement meilleurs ? Consider a sample, i.i.d., { y 1 , · · · , y n } with distribution N ( µ, σ 2 ). Define θ = αY . What is the optimal α ⋆ to get the best estimator of µ ? � � � � � � � • bias: bias − µ = ( α − 1) µ = E θ θ � � = α 2 σ 2 � • variance: Var θ n � � = ( α − 1) 2 µ 2 + α 2 σ 2 � • mse: mse θ n µ 2 The optimal value is α ⋆ = < 1. µ 2 + σ 2 n 13 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  14. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Linear Model Consider some linear model y i = x T i β + ε i for all i = 1 , · · · , n . Assume that ε i are i.i.d. with E ( ε ) = 0 (and finite variance). Write         β 0   1 · · · y 1 x 1 , 1 x 1 ,k ε 1          β 1  . . . . .       ...   . . . . . = +       . . . . . . .       .     .   1 · · · y n x n, 1 x n,k ε n β k � �� � � �� � � �� � � �� � y ,n × 1 ε ,n × 1 X ,n × ( k +1) β , ( k +1) × 1 Assuming ε ∼ N ( 0 , σ 2 I ), the maximum likelihood estimator of β is � β = argmin {� y − X T β � ℓ 2 } = ( X T X ) − 1 X T y ... under the assumtption that X T X is a full-rank matrix. i X cannot be inverted? Then � What if X T β = [ X T X ] − 1 X T y does not exist, but � β λ = [ X T X + λ I ] − 1 X T y always exist if λ > 0. 14 @freakonometrics freakonometrics freakonometrics.hypotheses.org

  15. Arthur Charpentier, ENSAE - Actuariat Assurace Non Vie - 2017 Ridge Regression The estimator � β = [ X T X + λ I ] − 1 X T y is the Ridge estimate obtained as solution of       n � i β ] 2 + λ � β � ℓ 2 � [ y i − β 0 − x T β = argmin  � �� �    β i =1 1 T β 2 for some tuning parameter λ . One can also write � {� Y − X T β � ℓ 2 } β = argmin β ; � β � ℓ 2 ≤ s Remark Note that we solve � { objective( β ) } where β = argmin β objective( β ) = L ( β ) + R ( β ) � �� � � �� � training loss regularization 15 @freakonometrics freakonometrics freakonometrics.hypotheses.org

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend