acceleration of heavy ion beams with a superconducting
play

Acceleration of Heavy Ion Beams with a Superconducting Continous - PowerPoint PPT Presentation

Acceleration of Heavy Ion Beams with a Superconducting Continous Wave cw-Linac at GSI W. Barth 1,2 , K. Aulenbacher 1,2,3 , M. Basten 4 , M. Busch 4 , C. Burandt 1,2 , F. Dziuba 1,2,3 , V. Gettmann 1,2 , M. Heilmann 2 , T. Krzeder 1,2 ,


  1. Acceleration of Heavy Ion Beams with a Superconducting Continous Wave cw-Linac at GSI W. Barth 1,2 , K. Aulenbacher 1,2,3 , M. Basten 4 , M. Busch 4 , C. Burandt 1,2 , F. Dziuba 1,2,3 , V. Gettmann 1,2 , M.  Heilmann 2 , T.  Kürzeder 1,2 , S. Lauber 1,2,3 , J. List 1,2,3 ,M. Miski-Oglu 1,2 , H. Podlech 4 , A. Rubin 2 , A. Schnase 2 , M.  Schwarz 4 , S.  Yaramyshev 2 1 Helmholtz Institut Mainz, Germany 2 GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany 3 Johannes Gutenberg-Universität Mainz, Mainz, Germany 4 IAP Goethe-Universität Frankfurt, Frankfurt, Germany 1. Introduction 2. General Linac layout and RF-cavity development 3. EQUUS beam dynamics and Matching section 4. Acceleration of heavy ion beams - First beam test with a sc CH-cavity - Systematic phase space measurements 5. Further R&D/Advanced Demonstrator Project HELIAC* – preparation work 6. 7. Outlook * HElmoltz LInear ACcelerator

  2. Introduction GSI UNIversal Linear ACcelerator High Charge State Injector (1991) Single Gap Resonators High Current Injector Alvarez (1975) (1975) (1999) 2 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  3. Uranium High Current Injector-Performance 16 Oct 14 U 28+ Nov.14 Oct 15 12 July 16 ion current [emA] Design/1999 Design/FAIR 8 U 4+ 4 0 LEBT HSI gas stripper 3 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  4. GSI/FAIR-Requirements FAIR  high beam currents  low repetition rate (max. 3 Hz)  low duty factor (0.1 %, pulse length for SIS18 only 100 µs) Super Heavy Element-user program  relatively low beam currents  high repetition rate (50 Hz)  high duty factor (100 %, pulse length up to 20 ms) Material Science at GSI-experimental hall  Heavy Ions (m  200)  High Beam Energy (up to 10 MeV/u)  Continuous Beam Energy Variation (1.5 – 10 MeV/u) 4 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  5. cw-LINAC-project: Motivation Nuclear reactions at the Coulomb-barrier  production of Super Heavy Elements (SHE) 288 289 Production of Element , , 30 𝑓𝑤𝑓𝑜𝑢𝑡 uut uut 115 115 (D. Rudolph, Lund Univ., PRL 111, 112502 (2013)) GSI- Unilac cw-Linac 6 ∙ 10 12 6 ∙ 10 13 Beam intensity (particle/s) Beam on target 3 weeks 2 days 5 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  6. General Heavy Ion cw-Linac layout 6 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  7. H-type Cavity developments HSI 36 MHz@gsi sc-prototype, 360 MHz HLI 108 MHz@gsi nc-CH-cavity sc-booster cavity, 325 MHz rt-325 MHz IH 216 MHz@HIT/Heidelberg Alvarez Wideröe 7 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  8. CH-cavity: Field profiles H field E field E field along beam axis - - + + - + 1,4 Simulation 1,2 Measurement 01-28-2015 1,0 E / arb. units - - - + + + 0,8 - - + + 0,6 0,4 0,2 - - - + + + 0,0 0 100 200 300 400 500 600 700 Beam axis / mm • Multigap drift tube cavity for the acceleration of protons and ions in the low and medium energy range • Drift tubes are alternating connected to “ + ” and “ - ” potential C ross-bar- H -mode cavity  CH cavity • Equidistant drift tubes length  special beam dynamics • 8 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  9. EQUUS beam dynamics concept courtesy: F. Dziuba et al., Poster@LINAC2018, THPO073 Longitudinal motion of an accelerated bunch in the constant- β -section EQUUS - EQUidistant mUltigap Structure y m y o 0.01 3 Particles too early obtain less acceleration Db 1 0 2 longitudinal focussing 1 -0.01 y (deg) 0 -90 -180 -270 2 Particles synchr. reach max. acceleration 7 longitudinal defocussing 3 2 E o (MV/m) 1 0 b s Particles too early obtain less acceleration 3 -7 y (deg) longitudinal focussing -270 0 -90 -180 Resonant acceleration at  = -30  EQUUS 1 3 2 9 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  10. RF Testing of the CH-Cavity (10/2016) RF test in a horizontal cryostat (@4.2  K) Dynamic tuner Static tuner Inclined stem courtesy: F. Dziuba et al., Poster@LINAC2018, THPO073 Preparation ports Helium vessel • Improved performance (add. HPR) • Low field emission rate • High field gradient • Therm. quenching beyond 9.6 MV/m 10 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  11. Experimental setup of the demonstrator at GSI Layout of the horizontal cryomodule Matching line - demonstrator – test bench Superconducting • Steering magnets • Phase probes for TOF measurement 9.3 T solenoids • Rebuncher • Beam current transformers • Quadrupole doublet • Bunch shape monitor (Feschenko) • Profile grids • Emittance measurement Demonstrator at GSI-High Charge State Injector (HLI) Superconducting 217 MHz CH cavity Support frame LHe reservoir (3000 l) 11 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  12. 12 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  13. Matching the cw-Linac Demonstrator courtesy: A. Rubin, Proc of IPAC'13 13 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  14. Longitudinal matching QD QT QD B Mob HLI cw R R P G T T P P S x | y 1,4 MeV/u 1 2 Demonstrator EMI M D (z) D (z) 14 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  15. First Acceleration QD QD QT B Mob HLI cw R R P G T T P P S x | y 1,4 MeV/u 1 2 Demonstrator EMI M Intensity [arb. units] Intensity [arb. units] • Measurement of transient signal induced by traveling bunch • Acceleration! Energy gain of 0.5 MeV/u  systematic scan of rf- • phase and amplitude t [ns] 15 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  16. Bunch structure measurement QD QD QT B Mob HLI cw R R P G T T P P S x | y 1,4 MeV/u 1 2 Demonstrator EMI M D (z) cavities off R1 + R2 R1 + R2 + CH0 16 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  17. RF-parameter (matched case) 17 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  18. Amplituden-scan 100 2,3 75 Beam Transmission [%] 2 W kin [MeV/u] 50 1,7 E acc [MV/m] 25 Eacc [MV/m] 1,4 Transmission 1,1 0 0 1 2 3 4 5 6 E acc [MV/m] W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019 18

  19. Systematic Scans (RF-phase/-amplitude) Ar 9+ Ar 9+ 2,0 100 Beam Transmission [%] 80 Wkin [MeV/u] 1,8 60 40 1,6 20 1,4 0 160 4.6 160 4.6 210 210 3.9 3.9 260 260 310 3.0 3.0 310 3.0 3.5 3.9 4.3 4.6 3.0 3.5 3.9 4.3 4.6 Ar 6+ 5.5 MV/m W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019 19

  20. Emittance measurement horizontal vertical 1.40 MeV/u Ion species: 40 Ar 11+ , 40 Ar 9+ , 40 Ar 6+ (A/q=6.7), 50 Hz, 5ms, 25% beam duty, cw (rf duty), 1.5pµA (particle current),  95% (beam transmission), 0.460 MeV/u ( D W), transv. emittance growth  12% horizontal vertical 1.86 MeV/u W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019 20

  21. Advanced Demonstrator Standard cryomodule layout • New cryo module layout containing demonstrator CH cavity, 2 short CH cavities, 1 buncher and 2 solenoids • Simplified cavity design (easier manufacturing & surface processing) • CH1 & CH2 are already in production (delivery at 4 th quarter of 2019) • Ordering of cryostat at 1 rd quarter of 2019 • Tendering process for rebuncher, solenoids, rf-amplifiers and high power couplers ongoing Moderate increase of design gradient  more compact linac design or higher A/q • 21 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

  22. First RF-measurement for CH1 in a vertical cryostat 8 gap-CH-cavity courtesy: M. Basten et al., Poster@LINAC2018, THPO072 & SPWR010 22 W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend