aa
play

AA Based on work with Maarten Bu ffi ng and Markus Diehl MPI@LHC - - PowerPoint PPT Presentation

Matching and resummation in double parton scattering Tomas Kasemets Nikhef / VU AA Based on work with Maarten Bu ffi ng and Markus Diehl MPI@LHC - San Cristbal de las Casas, November 29, 2016 DPS di ff erential in transverse


  1. Matching and resummation in double parton scattering Tomas Kasemets Nikhef / VU √ AA Based on work with Maarten Bu ffi ng and Markus Diehl MPI@LHC - San Cristóbal de las Casas, November 29, 2016

  2. 
 DPS di ff erential in transverse momenta q 1 q 1 q 2 q 2 Total cross section • σ DPS / σ SPS ∼ Λ 2 Q 2 DPS populates final state phase space in a di ff erent way than SPS 
 • 
 d σ SP S d σ DP S 1 | q 1 | , | q 2 | ∼ Λ << Q : ∼ ∼ d 2 q 1 d 2 q 2 d 2 q 1 d 2 q 2 Q 4 Λ 2 DPS same power as SPS Makes small transverse momentum region a very interesting region for • DPS Any factorization theorem for this region, must include both single and • double parton scattering MPI@LHC | San Cristóbal de las Casas 2016 | Tomas Kasemets 2

  3. 
 
 Lessons from TMD factorization and pT resummation TMD Drell-Yan cross section (unpolarized) 
 • d 2 z d σ Z (2 π ) 2 e − i qz W q ¯ X q ( q 2 , µ 2 ) xd 2 q = ˆ q ( x, ¯ x, z ; µ ) σ q ¯ dxd ¯ q with 
 x, z ; µ, ¯ TMDs: 
 q = f q ( x, z ; µ, ζ ) f ¯ q (¯ ζ ) W q ¯ and born x hard-matching q ( q 2 , µ 2 ) = ˆ σ 0 q C H ( q 2 , µ 2 ) ˆ σ q ¯ q ¯ TMDs defined as combination of soft and collinear to cancel rapidity • divergencies Collins, 2011; Echevarria, Idilbi, Scimemi, 2011; 
 Echevarria, TK, Mulders, Pisano, 2015 Depends on two scales, UV and rapidity regularization. • ∂ ∂ ∂ log µ f a ( x, z ; µ, ζ ) = γ F,a ( µ, ζ ) f a ( x, z ; µ, ζ ) ∂ log µ K a ( z ; µ ) = − γ K,a ( µ ) ∂ log ζ f q ( x, z ; ζ , µ ) = 1 ∂ log ζ γ F,a ( µ, ζ ) = − 1 ∂ ∂ 2 K q ( z ) f q ( x, z ; ζ , µ ) . 2 γ K,a ( µ ) . γ K = Γ cusp MPI@LHC | San Cristóbal de las Casas 2016 | Tomas Kasemets 3

  4. TMD factorization and pT resummation For perturbatively small , can match TMDs onto PDFs • z X C ab ( x 0 , z ; ζ , µ ) ⊗ x f b ( x 0 ; µ ) , f a ( x, z ; ζ , µ ) = b Solving the evolution equations gives the evolved TMDs • X C ab ( x, z ; µ 0 , µ 2 x f b ( x 0 ; µ 0 , ζ 0 ) f a ( x, z ; µ, ζ ) = 0 ) ⊗ b √ ζ √ ζ ⇢Z µ 1  � � dµ γ F,a ( µ, µ 2 ) − γ K,a ( µ ) log + 1 K a ( z , µ 0 ) log × exp µ µ µ 0 µ 01 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 Can be supplemented by non-perturbative 
 • λ f = λ h = λ Q = 0 λ f = λ h = λ Q = 0 . 5 1 1 1 1 1 1 1 1 transverse momentum dependence etc. NNLL NNLL NNLL NNLL NNLL NNLL NNLL NNLL b c = 1 . 5 GeV − 1 b c = 1 . 5 GeV − 1 b c = 1 . 5 GeV − 1 b c = 1 . 5 GeV − 1 b c = 1 . 5 GeV − 1 b c = 1 . 5 GeV − 1 b c = 1 . 5 GeV − 1 b c = 1 . 5 GeV − 1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 Perturbative input alone gives pT resummed 
 • √ s = 13 TeV √ s = 13 TeV √ s = 13 TeV √ s = 13 TeV √ s = 13 TeV √ s = 13 TeV √ s = 13 TeV √ s = 13 TeV d σ /dq T d σ /dq T d σ /dq T d σ /dq T d σ /dq T d σ /dq T d σ /dq T d σ /dq T cross section 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 High scale processes, e.g. Higgs: 
 • 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 small dependence on non-pert. input 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 40 40 40 40 40 40 40 40 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 q T [GeV] q T [GeV] q T [GeV] q T [GeV] q T [GeV] q T [GeV] q T [GeV] q T [GeV] MPI@LHC | San Cristóbal de las Casas 2016 | Tomas Kasemets Echevarria, TK, Mulders, Pisano, 2015 4

  5. Goal of project: Set up the theoretical (DTMD) framework, within QCD • As few assumptions as possible • As much perturbative input as possible, to enhance predictive power • Provide the basis, correctly including and treating the di ff erent e ff ects. • Once set up in place, can introduce modeling and approximations to • connect with experiments Additional di ffi culties compared to TMDs for SPS • Di ff erent regions which require di ff erent matchings • Color (and polarization) structure • talk by Markus Diehl etc. • Compared to the pocket formula, it represents the other end of DPS • research MPI@LHC | San Cristóbal de las Casas 2016 | Tomas Kasemets 5

  6. 
 
 
 
 
 Soft and collinear functions DPS cross section proportional to • F T us ,gg ( Y R ) s T − 1 ( Y R − Y C ) s − 1 ( Y C − Y L ) F us ,gg ( Y L ) = F T gg ( Y C ) F gg ( Y C ) We define rapidity divergency free DTMDs as • Y L →−∞ s − 1 ( Y C − Y L ) F us ,gg ( Y L ) , F gg ( Y C ) = lim √ AA Collinear matrix element 
 • Z dz − dz − 2 ) p + 1 2 π dy − e − i ( x 1 z − 2 1 + x 2 z − F us ,gg ( x 1 , x 2 , z 1 , z 2 , y ) ⇠ 2 π ⇥ h p | O g (0 , z 2 ) O g ( y, z 1 ) | p i , Diehl, Schäfer, Ostermeier, 2011 operators dressed by Wilson lines (adjoint rep.) O g i ( y, z i ) = g T µ ν W † G + ν W G + µ � i = y + =0 , � � z + Soft function, matrix in color space 
 • � W W † W W † W W † W W † � talk by Markus Diehl � 0 � ⌦ ↵ S ∼ 0 perturbative calculation at NNLO Vladimirov, 2016 MPI@LHC | San Cristóbal de las Casas 2016 | Tomas Kasemets 6

  7. 
 
 
 
 
 DTMD cross section For color singlet production (photon, z, Higgs etc.) at 
 • | q 1 , 2 | ⇠ q T ⌧ Q = 1 d σ DPS X σ a 1 b 1 ( q 2 1 , µ 2 σ a 2 b 2 ( q 2 2 , µ 2 ˆ 1 ) ˆ 2 ) x 2 d 2 q 1 d 2 q 2 dx 1 dx 2 d ¯ x 1 d ¯ C a 1 ,a 2 ,b 1 ,b 2 d 2 z 1 d 2 z 2 Z (2 π ) 2 d 2 y e − i q 1 z 1 − i q 2 z 2 W a 1 a 2 b 1 b 2 (¯ x i , x i , z i , y ; µ i , ν ) × (2 π ) 2 with: x i , z i , y ; µ i , ¯ X R F b 1 b 2 (¯ ζ ) R F a 1 a 2 ( x i , z i , y ; µ i , ζ ) W = Φ ( ν y + ) Φ ( ν y − ) R y ± = y ± 1 removes UV region . Choose . 
 2 ( z 1 − z 2 ) y ± ⌧ 1 / ν Φ ( ν y ± ) • ν ∼ Q dependence cancelled by subtraction Φ talk by Jo Gaunt Double TMDs (DTMDs) depend on: 
 R F a 1 a 2 ( x i , z i , y ; µ i , ζ ) • color label, parton and polarization label 
 a 1 , 2 , b 1 , 2 = R = 1 , 8 , ... momentum fractions, transverse distances 
 x 1 , 2 = y , z 1 , 2 = UV renormalization scales, rapidity regularization scale, ζ = ζ = Q 2 1 Q 2 ζ ¯ µ 1 , 2 = 2 MPI@LHC | San Cristóbal de las Casas 2016 | Tomas Kasemets 7

  8. 
 
 
 
 
 Scale evolution UV and rapidity scale 
 • ∂ R F a 1 a 2 ( x i , z i , y ; µ i , ζ ) = γ F,a 1 ( µ 1 , x 1 ζ /x 2 ) R F a 1 a 2 ∂ log µ 1 R F a 1 a 2 ( x i , z i , y ; µ i , ζ ) = 1 ∂ RR 0 K a 1 a 2 ( z 1 , z 2 , y ) R 0 F a 1 a 2 ∂ log ζ 2 Complicated functions (3 transverse vectors!), little predictive power • When : 
 • Λ ⌧ q T ⌧ Q | q 1 | ∼ | q 2 | ∼ | q 1 ± q 2 | ∼ q T d 2 z 1 d 2 z 2 Z (2 π ) 2 d 2 y e − i q 1 z 1 − i q 2 z 2 W a 1 a 2 b 1 b 2 (¯ x i , x i , z i , y ; µ 1 , µ 2 , ν ) (2 π ) 2 then region of perturbative dominates result | z i | ∼ 1 /q T But what about the size of 
 • y — can be either small or large | y | ∼ 1 /q T | y | ∼ 1 / Λ MPI@LHC | San Cristóbal de las Casas 2016 | Tomas Kasemets 8

  9. Region of large y | z i | ∼ 1 , | y | ∼ 1 Scalings • Λ ⌧ q T ⌧ Q Λ q T Match DTMDs onto the DPDFs • X R F a 1 a 2 ( x i , z i , y ) = R C f,a 1 b 1 ( x 0 R C f,a 2 b 2 ( x 0 R F b 1 b 2 ( x 0 1 , z 1 ) ⊗ 2 , z 2 ) ⊗ i , y ) x 1 x 2 b 1 b 2 Mixing between quark and gluon distributions • RR S qq R F us ,a 1 b 1 Combine and into subtracted DTMD possible since 
 • (independent of parton type) RR S qq ( y ) = RR S gg ( y ) We calculate soft function and matching coe ffi cients at one-loop order 
 • (all parton types, polarizations and color representations, CSS and SCET) Coe ffi cients equal to TMDs — PDFs matching coe ff s. appart from: 
 • 1) Color factors for non-singlet 
 2) Di ff erent vector dependence, since DTMDs and DPDs are parametrized in terms of same distance between partons 
 3) additional polarizations possible MPI@LHC | San Cristóbal de las Casas 2016 | Tomas Kasemets 9

  10. Region of large y Rapidity evolution kernel simplifies considerably 
 • RR 0 K a 1 a 2 ( z i , y ; µ i ) = δ RR 0 ⇥ R K a 1 ( z 1 ; µ 1 ) + R K a 2 ( z 2 ; µ 2 ) + R J ( y ; µ i ) ⇤ Diagonal in color, distance dependence separated 
 • 1 K a 1 ( z 1 ; µ 1 ) usual Collins-Soper kernel R J ( y ; µ i ) remains for DPDFs (rapidity scale evolution for collinear func.) • Solution to evolution equations: • R F a 1 a 2 ( x i , z i , y ; µ i , ζ ) X R ⇥ ⇤ x 2 F b 1 b 2 ( x 0 = C a 1 b 1 ( z 1 ) ⊗ x 1 C a 2 b 2 ( z 2 ) ⊗ i , y ; µ 0 i , ζ 0 ) b 1 b 2 ⇢Z µ 1 p p  x 1 ζ /x 2 � x 1 ζ /x 2 dµ + R K a 1 ( z 1 ) log × exp γ F,a 1 − γ K,a 1 log µ µ µ 01 µ 01 Z µ 2 p p dµ  x 2 ζ /x 1 � x 2 ζ /x 1 + R K a 2 ( z 2 ) log + γ F,a 2 − γ K,a 2 log µ µ µ 02 µ 02 √ ζ � + R J ( y ) log √ ζ 0 MPI@LHC | San Cristóbal de las Casas 2016 | Tomas Kasemets 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend