a variational method for the rasch model
play

A variational method for the Rasch model Frank Rijmen and Ji r - PowerPoint PPT Presentation

A variational method for the Rasch model Frank Rijmen and Ji r Vomlel Catholic University Leuven, Belgium Academy of Sciences of the Czech Republic Salzburg, December, 3, 2005 F. Rijmen and J. Vomlel () Rasch model Salzburg,


  1. A variational method for the Rasch model Frank Rijmen and Jiˇ r´ ı Vomlel Catholic University Leuven, Belgium Academy of Sciences of the Czech Republic Salzburg, December, 3, 2005 F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 1 / 12

  2. Variables and parameters Model variables binary response variable - its values indicates whether Y n , i the answer of person n to question i was correct n = 1 , . . . , N person index i = 1 , . . . , I question index Model parameters δ i difficulty of question i - fixed effects β n ability (knowledge level) of person n - a random effect F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 2 / 12

  3. Models for the response variable Y � 1 if β n ≥ δ i = Y n , i 0 otherwise. exp( β n − δ i ) P ( Y n , i = 1) = 1 + exp( β n − δ i ) P ( Y n , i = 1 | β n ) for δ i = − 2 1 0.8 0.6 0.4 0.2 -4 -6 -2 0 2 F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 3 / 12

  4. Probability distribution for random effect β n N (0 , σ 2 ) P ( β n ) = a normal (Gaussian) distribution with the mean equal zero, and variance σ 2 . 0.4 0.3 0.2 0.1 0 -3 -2 -1 0 1 2 3 F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 4 / 12

  5. Computations with the Rasch model prior N β (0 , 1) 0.4 0.3 0.2 0.1 0 -3 -2 -1 0 1 2 3 N β (0 , 1) F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 5 / 12

  6. Computations with the Rasch model P ( Y = 1 | β, δ 1 = − 2) posterior 1 0.35 0.3 0.8 0.25 0.6 0.2 0.15 0.4 0.1 0.2 0.05 0 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 N β (0 , 1) · P ( Y = 1 | β, δ 1 = − 2) F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 5 / 12

  7. Computations with the Rasch model P ( Y = 0 | β, δ 2 = 0) posterior 1 0.175 0.15 0.8 0.125 0.6 0.1 0.075 0.4 0.05 0.2 0.025 0 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 N β (0 , 1) · P ( Y = 1 | β, δ 1 = − 2) · P ( Y = 0 | β, δ 2 = 0) F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 5 / 12

  8. Computations with the Rasch model P ( Y = 0 | β, δ 3 = +1) posterior 1 0.14 0.12 0.8 0.1 0.6 0.08 0.06 0.4 0.04 0.2 0.02 0 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 N β (0 , 1) · P ( Y = 1 | β, δ 1 = − 2) · P ( Y = 0 | β, δ 2 = 0) · P ( Y = 0 | β, δ 3 = +1) F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 5 / 12

  9. Computations with the Rasch model P ( Y = 0 | β, δ 4 = +2) posterior 1 0.12 0.8 0.1 0.08 0.6 0.06 0.4 0.04 0.2 0.02 0 -3 -2 -1 0 1 2 3 -1 1 -3 -2 0 2 3 N β (0 , 1) · P ( Y = 1 | β, δ 1 = − 2) · P ( Y = 0 | β, δ 2 = 0) · P ( Y = 0 | β, δ 3 = +1) · P ( Y = 0 | β, δ 4 = +2) F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 5 / 12

  10. Likelihood of the model given data Assume we have observed answers to I questions from N persons, i.e., we have data y . . . . y 1 , 1 y 1 , 2 y 1 , I y 2 , 1 y 2 , 2 . . . y 2 , I . . . y N , 1 y N , 2 . . . y N , I The task is to find model parameters σ, δ 1 , . . . , δ I that maximize likelihood. N I � � N β n (0 , σ 2 ) · � = P ( y ni | β n , δ i ) d β n L n =1 i =1 ... but this integral does not have a closed-form solution! F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 6 / 12

  11. Likelihood of the model given data Assume we have observed answers to I questions from N persons, i.e., we have data y . . . . y 1 , 1 y 1 , 2 y 1 , I y 2 , 1 y 2 , 2 . . . y 2 , I . . . y N , 1 y N , 2 . . . y N , I The task is to find model parameters σ, δ 1 , . . . , δ I that maximize likelihood. N I � � N β n (0 , σ 2 ) · � = P ( y ni | β n , δ i ) d β n L n =1 i =1 ... but this integral does not have a closed-form solution! F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 6 / 12

  12. Likelihood of the model given data Assume we have observed answers to I questions from N persons, i.e., we have data y . . . . y 1 , 1 y 1 , 2 y 1 , I y 2 , 1 y 2 , 2 . . . y 2 , I . . . y N , 1 y N , 2 . . . y N , I The task is to find model parameters σ, δ 1 , . . . , δ I that maximize likelihood. N I � � N β n (0 , σ 2 ) · � = P ( y ni | β n , δ i ) d β n L n =1 i =1 ... but this integral does not have a closed-form solution! F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 6 / 12

  13. Likelihood of the model given data Assume we have observed answers to I questions from N persons, i.e., we have data y . . . . y 1 , 1 y 1 , 2 y 1 , I y 2 , 1 y 2 , 2 . . . y 2 , I . . . y N , 1 y N , 2 . . . y N , I The task is to find model parameters σ, δ 1 , . . . , δ I that maximize likelihood. N I � � N β n (0 , σ 2 ) · � = P ( y ni | β n , δ i ) d β n L n =1 i =1 ... but this integral does not have a closed-form solution! F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 6 / 12

  14. Likelihood of the model given data Assume we have observed answers to I questions from N persons, i.e., we have data y . . . . y 1 , 1 y 1 , 2 y 1 , I y 2 , 1 y 2 , 2 . . . y 2 , I . . . y N , 1 y N , 2 . . . y N , I The task is to find model parameters σ, δ 1 , . . . , δ I that maximize likelihood. N I � � N β n (0 , σ 2 ) · � = P ( y ni | β n , δ i ) d β n L n =1 i =1 ... but this integral does not have a closed-form solution! F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 6 / 12

  15. Likelihood of the model given data Assume we have observed answers to I questions from N persons, i.e., we have data y . . . . y 1 , 1 y 1 , 2 y 1 , I y 2 , 1 y 2 , 2 . . . y 2 , I . . . y N , 1 y N , 2 . . . y N , I The task is to find model parameters σ, δ 1 , . . . , δ I that maximize likelihood. N I � � N β n (0 , σ 2 ) · � = P ( y ni | β n , δ i ) d β n L n =1 i =1 ... but this integral does not have a closed-form solution! F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 6 / 12

  16. Likelihood of the model given data Assume we have observed answers to I questions from N persons, i.e., we have data y . . . . y 1 , 1 y 1 , 2 y 1 , I y 2 , 1 y 2 , 2 . . . y 2 , I . . . y N , 1 y N , 2 . . . y N , I The task is to find model parameters σ, δ 1 , . . . , δ I that maximize likelihood. N I � � N β n (0 , σ 2 ) · � = P ( y ni | β n , δ i ) d β n L n =1 i =1 ... but this integral does not have a closed-form solution! F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 6 / 12

  17. Approximations to the integral Gaussian quadrature Laplace approximation Variational approximation F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 7 / 12

  18. Approximations to the integral Gaussian quadrature Laplace approximation Variational approximation F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 7 / 12

  19. Approximations to the integral Gaussian quadrature Laplace approximation Variational approximation F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 7 / 12

  20. Variational approximation Let h = β n − δ i . exp( h ) P ( Y n , i = 1 | h ) = 1 + exp( h ) exp( h / 2) = exp( − h / 2) + exp( h / 2) = exp { h / 2 − log [exp( h / 2) + exp( − h / 2)] } exp { h / 2 + f ( h ) } = f ( h ) is approximated by the first order Taylor expansion ˜ f ( h , ξ ) in variable h 2 around point ξ . � � �� f ( ξ ) + ∂ f ( h ) � h = ξ · ( h 2 − ξ 2 ) P ( Y n , i = 1 | h ) ≈ exp h / 2 + � ∂ ( h 2 ) � � � h / 2 + ˜ = exp f ( h , ξ ) ˜ = P ( Y n , i = 1 | h , ξ ) F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 8 / 12

  21. Variational approximation Let h = β n − δ i . exp( h ) P ( Y n , i = 1 | h ) = 1 + exp( h ) exp( h / 2) = exp( − h / 2) + exp( h / 2) = exp { h / 2 − log [exp( h / 2) + exp( − h / 2)] } exp { h / 2 + f ( h ) } = f ( h ) is approximated by the first order Taylor expansion ˜ f ( h , ξ ) in variable h 2 around point ξ . � � �� f ( ξ ) + ∂ f ( h ) � h = ξ · ( h 2 − ξ 2 ) P ( Y n , i = 1 | h ) ≈ exp h / 2 + � ∂ ( h 2 ) � � � h / 2 + ˜ = exp f ( h , ξ ) ˜ = P ( Y n , i = 1 | h , ξ ) F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 8 / 12

  22. Variational approximation Let h = β n − δ i . exp( h ) P ( Y n , i = 1 | h ) = 1 + exp( h ) exp( h / 2) = exp( − h / 2) + exp( h / 2) = exp { h / 2 − log [exp( h / 2) + exp( − h / 2)] } exp { h / 2 + f ( h ) } = f ( h ) is approximated by the first order Taylor expansion ˜ f ( h , ξ ) in variable h 2 around point ξ . � � �� f ( ξ ) + ∂ f ( h ) � h = ξ · ( h 2 − ξ 2 ) P ( Y n , i = 1 | h ) ≈ exp h / 2 + � ∂ ( h 2 ) � � � h / 2 + ˜ = exp f ( h , ξ ) ˜ = P ( Y n , i = 1 | h , ξ ) F. Rijmen and J. Vomlel () Rasch model Salzburg, December, 3, 2005 8 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend