a two level enriched finite element method for the darcy
play

A two-level enriched finite element method for the Darcy equation - PowerPoint PPT Presentation

A two-level enriched finite element method for the Darcy equation Gabriel R. Barrenechea Department of Mathematics, University of Strathclyde, Scotland in collaboration with: Alejandro Allendes Erwin Hern andez Fr ed eric Valentin


  1. A two-level enriched finite element method for the Darcy equation Gabriel R. Barrenechea Department of Mathematics, University of Strathclyde, Scotland in collaboration with: Alejandro Allendes Erwin Hern´ andez Fr´ ed´ eric Valentin Valpara´ ıso, Chile Valpara´ ıso, Chile LNCC, Brazil Scaling up and modeling for transport and flow in porous media Dubrovnik, October 13-16, 2008

  2. Plan of the talk ☞ The Darcy equation and the enrichment strategy. ☞ The semi-discrete method and error estimates. ☞ The two-level method and its analysis. ☞ Numerical results. ☞ Concluding remarks. Teo-level FEM for the Darcy equation Page 1

  3. The Darcy equation and the enrichment strategy The problem statement : Find ( u , p ) such that u + ∇ p = f , ∇· u = g in Ω , u · n = 0 on ∂ Ω , � where Ω g = 0 . (Ω) × L 2 Weak problem : Find ( u , p ) ∈ H div 0 (Ω) such that 0 ∀ ( v , q ) ∈ H div (Ω) × L 2 A (( u , p ) , ( v , q )) = F ( v , q ) 0 (Ω) , 0 where A (( u , p ) , ( v , q )) :=( u , v ) Ω − ( p, ∇· v ) Ω − ( q, ∇· u ) Ω , F ( v , q ) :=( f , v ) Ω − ( g, q ) Ω . Teo-level FEM for the Darcy equation Page 2

  4. The PGEM for the Darcy problem Derivation of the Method : Find u H := u 1 + u e ∈ P 1 (Ω) 2 + H div (Ω) and 0 p H := p 0 + p e ∈ P 0 (Ω) ⊕ L 2 0 ( T H ) such that A (( u 1 + u e , p 0 + p e ) , ( v H , q H )) = F ( v H , q H ) , for all v H := v 1 + v b ∈ P 1 (Ω) 2 ⊕ H div ( T H ), q H = q 0 + q e ∈ P 0 (Ω) ⊕ L 2 0 ( T H ), 0 where ( T H ) := { w ∈ L 2 (Ω) 2 : w | K ∈ H div H div ( K ) ∀ K ∈ T H } , 0 0 L 2 0 ( T H ) := { q ∈ L 2 (Ω) : q | K ∈ L 2 0 ( K ) , ∀ K ∈ T H } . Equivalent system : A (( u 1 + u e , p 0 + p e ) , ( v 1 , q 0 )) = L ( v 1 , q 0 ) ∀ ( v 1 , q 0 ) ∈ V H × Q H , ( u 1 + u e , v b ) K − ( p 0 + p e , ∇ · v b ) K − ( q e , ∇ · ( u 1 + u e )) K = ( f , v b ) K − ( g, q e ) K , for all ( v b , q e ) ∈ H 0 ( div, K ) × L 2 0 ( K ) and all K ∈ T H . Teo-level FEM for the Darcy equation Page 3

  5. Derivation of the Method (continued) Strong problem for ( u e , p e ) : u e + ∇ p e = − u 1 , ∇· u e = C K in K, u e · n = α H F � p 0 � on each F ⊆ ∂K ∩ Ω . In order to make this problem compatible, we set 3 � 1 � C K = � p 0 � . α H F i | K | F i i =1 Teo-level FEM for the Darcy equation Page 4

  6. Derivation of the Method (continued) • Splitting u e = u M e + u D e and p e = p M e + p D e • ( u M e , p M e ) solves u M e + ∇ p M ∇· u M e = − u 1 , e = 0 in K, u M e · n = 0 on ∂K • ( u D e , p D e ) solves u D e + ∇ p D ∇· u D e = 0 in K, e = C K in K, u D e · n = αH F � p 0 � on each F ⊆ ∂K ∩ Ω . Teo-level FEM for the Darcy equation Page 5

  7. Derivation of the Method (continued) Remarks: • u D e is a Raviart-Thomas field. Indeed, there holds � u D e = αH F � p 0 � ϕ F , F ⊆ ∂K ∩ Ω where | K | ϕ F (x) = (x − x F ) . 2 H F Teo-level FEM for the Darcy equation Page 6

  8. Derivation of the Method (continued) Returning to the first equation : For all ( v 1 , q 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω): ( u 1 + u e , v 1 ) Ω − ( p 0 + p e , ∇ · v 1 ) Ω + ( q 0 , ∇ · ( u 1 + u e )) Ω = F ( v 1 , q 0 ) . Remark : • ( p e , ∇· v 1 ) K = 0 for all K ∈ T H , and hence the enrichment of the pressure has no effect on the formulation. , v 1 ) Ω + � • ( u 1 + u e , v 1 ) Ω = ( u 1 + u M K ∈T H ( u D e ( − u 1 ) e ( � p 0 � ) , v 1 ) K ; � �� � = −M K ( u 1 ) • ( q 0 , ∇· u e ) Ω = � e · n , q 0 ) ∂K = � K ∈T H ( u D F ∈E H ( αH F � p 0 � , � q 0 � ) F ; Teo-level FEM for the Darcy equation Page 7

  9. Derivation of the Method (continued) Find ( u 1 , p 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω) such that � � ( u D (( I − M K )( u 1 ) , v 1 ) Ω + e ( � p 0 � ) , v 1 ) K − ( p 0 , ∇ · v 1 ) Ω K ∈T H K ∈T H � − ( q 0 , ∇ · u 1 ) Ω − αH F ( � p 0 � , � q 0 � ) F = F ( v 1 , q 0 ) , F ∈E H for all ( v 1 , q 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω). Lemma: The operator M K satisfies ∀ v , w ∈ L 2 ( K ) 2 . ( v − M K ( v ) , M K ( w )) K = 0 Furthermore � ( u D e ( � p 0 � ) , v 1 ) K ≈ O ( H 2 ) , K ∈T H and then this term may be neglected. Teo-level FEM for the Darcy equation Page 8

  10. The semi-discrete problem Find ( u 1 , p 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω) such that B (( u 1 , p 0 ) , ( v 1 , q 0 )) = F ( v 1 , q 0 ) , for all ( v 1 , q 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω), where � B (( u 1 , p 0 ) , ( v 1 , q 0 )) := (( I − M K )( u 1 ) , ( I − M K )( v 1 )) K K ∈T H � − ( p 0 , ∇ · v 1 ) Ω − ( q 0 , ∇ · u 1 ) Ω − αH F ( � p 0 � , � q 0 � ) F . F ∈E H Remark : This method is symmetric. Teo-level FEM for the Darcy equation Page 9

  11. The semi-discrete problem Remark : u H has discontinuous tangential component (unlike u 1 ) and it satisfies the following local mass conservation property: � [ ∇ · ( u 1 + u D e ) − g ] = 0 ∀ K ∈ T H . K The same argument may be applied to any jump-based stabilized method for the Darcy equation. Teo-level FEM for the Darcy equation Page 10

  12. The semi-discrete problem Numerical analysis of the semi-discrete problem : Lemma: The bilinear forms B ( ., . ) satisfies � B (( v 1 , q 0 ) , ( v 1 , − q 0 )) = � ( I − M K )( v 1 ) � 2 τ F � � q 0 � � 2 0 , Ω + 0 ,F , F ∈E H for all ( v 1 , q 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω). Lemma: There exists C > 0 such that ∀ v 1 ∈ P 1 ( K ) 2 . � v 1 � 0 ,K ≤ C ( � ( I − M K )( v 1 ) � 0 ,K + �∇ · v 1 � 0 ,K ) Teo-level FEM for the Darcy equation Page 11

  13. The semi-discrete problem Mesh-dependent norm : � � ( w , t ) � 2 H = � w � 2 div, Ω + α � t � 2 αH F � � t � � 2 0 , Ω + 0 ,F . F ∈E H Theorem: Let α small enough, then there exists β > 0, independent of H and α , such that B (( v 1 , q 0 ) , ( w 1 , t 0 )) sup ≥ β � ( v 1 , q 0 ) � H , � ( w 1 , t 0 ) � H ( w 1 ,t 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω) −{ 0 } for all ( v 1 , q 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω). Teo-level FEM for the Darcy equation Page 12

  14. The semi-discrete problem Theorem: There exists C > 0 such that � ( u − u 1 , p − p 0 ) � H ≤ CH ( � u � 2 , Ω + | p | 1 , Ω ) , � � u − ( u 1 + u D e ) � div, Ω ≤ C H ( � u � 2 , Ω + | p | 1 , Ω . Teo-level FEM for the Darcy equation Page 13

  15. The two-level FEM Remember: To implement the method, M K ( u 1 ) must be computed, i.e., we must solve the local problem u M e + ∇ p M ∇· u M e = u 1 , e = 0 in K, u M e · n = 0 on ∂K Teo-level FEM for the Darcy equation Page 14

  16. The two-level FEM Starting remark : v 1 − M K ( v 1 ) = ∇ p e ( v 1 ) . Then our method may be rewritten in the following equivalent way � ( ∇ p e ( u 1 ) , ∇ p e ( v 1 )) K − ( p 0 , ∇ · v 1 ) Ω − ( q 0 , ∇ · u 1 ) Ω K ∈T H � − αH F ( � p 0 � , � q 0 � ) F = ( f , v 1 ) Ω − ( g, q 0 ) , F ∈E H for all ( v 1 , q 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω). Here, p e ( v 1 ) solves − ∆ p e ( v 1 )= −∇ · v 1 in K , ∂ n p e ( v 1 )= v 1 · n on ∂K . Teo-level FEM for the Darcy equation Page 15

  17. The two-level FEM Discrete local problems : Find p h ( v 1 ) ∈ R K h such that � � ∀ ξ h ∈ R K ∇ p h ( v 1 ) · ∇ ξ h = v 1 · ∇ ξ h h , K K where R K h are Lagrangian finite elements of degree l ≥ 1. Two-level method : Find ( u 1 ,h , p 0 ,h ) ∈ P 1 (Ω) 2 × P 0 (Ω) such that: ∀ ( v 1 , q 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω) , B h (( u 1 ,h , p 0 ,h ) , ( v 1 , q 0 )) = F( v 1 , q 0 ) where � B h (( v 1 , q 0 ) , ( w 1 , t 0 )) := ( ∇ p h ( v 1 ) , ∇ p h ( w 1 )) K − ( q 0 , ∇ · w 1 ) Ω K ∈T H � − ( t 0 , ∇ · v 1 ) Ω − τ F ( � q 0 � , � t 0 � ) F . F ∈E H Teo-level FEM for the Darcy equation Page 16

  18. The two-level FEM Lemma: Let � · � h be the mesh-dependent norm given by � � ( v 1 , q 0 ) � 2 �∇ p h ( v 1 ) � 2 0 ,K + �∇ · v 1 � 2 h := 0 , Ω + K ∈T H � α � q 0 � 2 τ F � � q 0 � � 2 0 , Ω + 0 ,F , F ∈E H and let us suppose that there exists C 0 > 0 such that h ≤ C 0 H K . Then � ( v 1 , q 0 ) � H ≤ C � ( v 1 , q 0 ) � h . Theorem: There exists β 2 > 0 independent of H, h and α such that B h (( v 1 , q 0 ) , ( w 1 , t 0 )) sup ≥ β 2 � ( v 1 , q 0 ) � H , � ( w 1 , t 0 ) � H ( w 1 ,t 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω) for all ( v 1 , q 0 ) ∈ P 1 (Ω) 2 × P 0 (Ω). Teo-level FEM for the Darcy equation Page 17

  19. The two-level FEM Theorem: There exists C > 0 such that hH t | g | t, Ω + ( H + h ) � u � 2 , Ω + H | p | 1 , Ω � � � ( u − u 1 ,h , p − p 0 ,h ) � H ≤ C , for t = 0 , 1. Remark : The condition h ≤ C 0 H means that a fixed mesh may be used for all the elements and all the refinements, hence making the computation cheap. In fact, in all the numerical results, only one P 1 element is used in each element. Teo-level FEM for the Darcy equation Page 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend