a simplified ab initio cosmic ray modulation model
play

A simplified ab initio cosmic-ray modulation model: Construction - PowerPoint PPT Presentation

A simplified ab initio cosmic-ray modulation model: Construction and predictive capabilities Katlego Moloto Eugene Engelbrecht Adri Burger July 17, 2017 Centre for Space Research North-West University Table of contents 1. Problem Statement


  1. A simplified ab initio cosmic-ray modulation model: Construction and predictive capabilities Katlego Moloto Eugene Engelbrecht Adri Burger July 17, 2017 Centre for Space Research North-West University

  2. Table of contents 1. Problem Statement 2. Modulation Model 3. Sample Solutions 2

  3. Problem Statement

  4. Problem Statement • Explain observed Previous solar minima spectra Differential intensity (part.m -2 .s -1 .sr -1 .MeV -1 ) Blue open symbols: A > 0 cycles modulation Red filled symbols: A < 0 cycles self-consistently 1 1977: Evenson et al. (1983) 1977: von Rosenvinge et al. (1979) 1998: Sanuki et al. (2000) 1965: Fan et al. (1966) 1965: Ormes and Webber (1968) 1965: Balasubrahmanyan et al. (1965) 1996: McDonald et al. (1998) 1987: McDonald et al. (1998) December 2009 PAMELA 0.1 0.1 1 Kinetic energy (GeV) Potgieter et al. (2013, ICRC PROC) 3

  5. Problem Statement • Explain observed Previous solar minima spectra Differential intensity (part.m -2 .s -1 .sr -1 .MeV -1 ) Blue open symbols: A > 0 cycles modulation Red filled symbols: A < 0 cycles self-consistently • Input realistic solar minimum 1 conditions 1977: Evenson et al. (1983) 1977: von Rosenvinge et al. (1979) 1998: Sanuki et al. (2000) 1965: Fan et al. (1966) 1965: Ormes and Webber (1968) 1965: Balasubrahmanyan et al. (1965) 1996: McDonald et al. (1998) 1987: McDonald et al. (1998) December 2009 PAMELA 0.1 0.1 1 Kinetic energy (GeV) Potgieter et al. (2013, ICRC PROC) 3

  6. Problem Statement • Explain observed Previous solar minima spectra Differential intensity (part.m -2 .s -1 .sr -1 .MeV -1 ) Blue open symbols: A > 0 cycles modulation Red filled symbols: A < 0 cycles self-consistently • Input realistic solar minimum 1 conditions 1977: Evenson et al. (1983) • Should give 1977: von Rosenvinge et al. (1979) 1998: Sanuki et al. (2000) 1965: Fan et al. (1966) predictive 1965: Ormes and Webber (1968) 1965: Balasubrahmanyan et al. (1965) capacity to 1996: McDonald et al. (1998) 1987: McDonald et al. (1998) modulation code December 2009 PAMELA 0.1 0.1 1 Kinetic energy (GeV) Potgieter et al. (2013, ICRC PROC) 3

  7. Problem Statement • Explain observed Previous solar minima spectra Differential intensity (part.m -2 .s -1 .sr -1 .MeV -1 ) Blue open symbols: A > 0 cycles modulation Red filled symbols: A < 0 cycles self-consistently • Input realistic solar minimum 1 conditions 1977: Evenson et al. (1983) • Should give 1977: von Rosenvinge et al. (1979) 1998: Sanuki et al. (2000) 1965: Fan et al. (1966) predictive 1965: Ormes and Webber (1968) 1965: Balasubrahmanyan et al. (1965) capacity to 1996: McDonald et al. (1998) 1987: McDonald et al. (1998) modulation code December 2009 PAMELA • This can be done 0.1 0.1 1 using an ab initio Kinetic energy (GeV) approach Potgieter et al. (2013, ICRC PROC) 3

  8. Introduction • Ab initio approach to modulation (e.g. Engelbrecht and Burger 2013a and b, APJ) requires turbulence spectra as input for diffusion tensor and not just B or alpha 4

  9. Introduction • Ab initio approach to modulation (e.g. Engelbrecht and Burger 2013a and b, APJ) requires turbulence spectra as input for diffusion tensor and not just B or alpha • Simplified version of Engelbrecht and Burger (2015, APJ) model is used in this study; results are preliminary and qualitative rather than quantitative 4

  10. Introduction • Ab initio approach to modulation (e.g. Engelbrecht and Burger 2013a and b, APJ) requires turbulence spectra as input for diffusion tensor and not just B or alpha • Simplified version of Engelbrecht and Burger (2015, APJ) model is used in this study; results are preliminary and qualitative rather than quantitative • Part of a project to study long-term modulation and solar-cycle dependence of turbulence parameters, thus time dependence 4

  11. Introduction • Ab initio approach to modulation (e.g. Engelbrecht and Burger 2013a and b, APJ) requires turbulence spectra as input for diffusion tensor and not just B or alpha • Simplified version of Engelbrecht and Burger (2015, APJ) model is used in this study; results are preliminary and qualitative rather than quantitative • Part of a project to study long-term modulation and solar-cycle dependence of turbulence parameters, thus time dependence • The code used in this project is a 3D Steady-state SDE code. 4

  12. Modulation Model

  13. Model ∂ f ∂ t = − ( V sw + � v d � ) · ∇ f + ∇ · ( K S · ∇ f ) + 1 3( ∇ · V sw ) ∂ f ∂ ln P • The term ( V sw + � v d � ) · ∇ f describes the outward convection of cosmic rays by the solar wind and cosmic ray drift. 5

  14. Model ∂ f ∂ t = − ( V sw + � v d � ) · ∇ f + ∇ · ( K S · ∇ f ) + 1 3( ∇ · V sw ) ∂ f ∂ ln P • The term ( V sw + � v d � ) · ∇ f describes the outward convection of cosmic rays by the solar wind and cosmic ray drift. • The term 1 3( ∇ · V sw ) ∂ f ∂ ln P describes adiabatic energy changes 5

  15. Model ∂ f ∂ t = − ( V sw + � v d � ) · ∇ f + ∇ · ( K S · ∇ f ) + 1 3( ∇ · V sw ) ∂ f ∂ ln P • The term ( V sw + � v d � ) · ∇ f describes the outward convection of cosmic rays by the solar wind and cosmic ray drift. • The term 1 3( ∇ · V sw ) ∂ f ∂ ln P describes adiabatic energy changes • and the remaining term ∇ · ( K S · ∇ f ) describes diffusion. 5

  16. Model • A colatitude dependent solar wind speed is used. • Parker Heliospheric magnetic field is used. • neutral sheet drift by Burger (2012, APJ) Strauss. (2010, MSC) 6

  17. Model • A colatitude 100 dependent solar 50 0 wind speed is used. 50 • Parker Heliospheric 100 100 magnetic field is used. • neutral sheet drift by 50 Burger (2012, APJ) 0 100 50 0 50 100 Engelbrecht and Burger (2010, ASR) 7

  18. Model • A colatitude dependent solar wind speed is used • Parker Heliospheric magnetic field is used. • neutral sheet drift by Burger (2012, APJ) 8

  19. Steady-state 3D Model • Steady-state 3D model using “effective” values of 1 AU observations as input, taking into account outward convection by the solar wind 9

  20. Effective Values A > 0 A < 0 A > 0 A < 0 A < 0 Classic 21 22 23 24 70 Tilt Angle [degrees] 50 30 Spot value 12Months 10 24Months 1980 1985 1990 1995 2000 2005 2010 2015 Time [Years] 10

  21. Solar Minimum Values Year Magnetic Field Variance Tilt Angle 1987 5.8 8.3 4.1 1997 5.7 9.4 4.5 2009 4.4 5.7 11.2 Nel. (2015, MSC) 11

  22. Variance 10 3 Zank et al. 1996 1987 Ecliptic Polar Smith et al. 2001 1997 2009 10 2 10 1 δ B 2 [nT 2 ] 10 0 10 -1 10 -2 10 -3 10 0 10 1 10 2 10 0 10 1 10 2 R [AU] R [AU] Based on Oughton et al. (2011, JGR) Based on Bavassano et al. (2000, JGR) 12

  23. Correlation Scales 10 0 Smith et al. 2001, e-folding 2D Ecliptic Polar Smith et al. 2001, integration Slab Weygand et al. 2011 Weygand et al. 2011 10 -1 λ c [AU] 10 -2 10 -3 10 0 10 1 10 2 10 0 10 1 10 2 R [AU] R [AU] Based on Oughton et al. (2011, JGR) Based on Wicks et al. (2010, PRL) 13

  24. Diffusion Tensor • Parallel diffusion based on QLT (Teufel & Schlickeiser 2003, A&A) � 2 � R 2 3 s � B o b 2 b � √ π ( s − 1) 4 √ π + √ π (2 − s )(4 − s ) λ � = R s bk min δ B slab , x 14

  25. Diffusion Tensor • Parallel diffusion based on QLT (Teufel & Schlickeiser 2003, A&A) � 2 � R 2 3 s � B o b 2 b � √ π ( s − 1) 4 √ π + √ π (2 − s )(4 − s ) λ � = R s bk min δ B slab , x • Perpendicular diffusion based on NLGC (Matthaeus et al. 2003, APJL; Shalchi et al. 2004) � 2 / 3 √ 3 δ B 2 � 2 ν − 1 λ 1 / 3 a 2 F 2 ( ν ) l 2 D 2 D λ ⊥ ≈ B 2 � 4 ν o 14

  26. Diffusion Tensor • Parallel diffusion based on QLT (Teufel & Schlickeiser 2003, A&A) � 2 � R 2 3 s � B o b 2 b � √ π ( s − 1) 4 √ π + √ π (2 − s )(4 − s ) λ � = R s bk min δ B slab , x • Perpendicular diffusion based on NLGC (Matthaeus et al. 2003, APJL; Shalchi et al. 2004) � 2 / 3 √ 3 δ B 2 � 2 ν − 1 λ 1 / 3 a 2 F 2 ( ν ) l 2 D 2 D λ ⊥ ≈ B 2 � 4 ν o • Drift coefficient derived by Engelbrecht et al (2017, APJ) � − 1 � 2 δ B T � 2 � λ ⊥ κ A = v 1 + 3 R L 2 R L B 0 14

  27. Sample Solutions

  28. MFP Rigidity 10 1 λ || 10 0 10 -1 λ [AU] 10 -2 λ ⊥ 10 -3 λ Α 1987 2009 1997 10 -4 0.1 1 10 Rigidity [GV] 15

  29. MFP Radial 10 2 10 1 λ || 10 0 λ [AU] 10 -1 10 -2 λ ⊥ 10 -3 1987 λ Α 2009 1997 10 -4 1 10 100 R [AU] 16

  30. Spectra Comparison 10 2 LIS 1987 1997 2009 IMP8, A < 0 Pamela, A < 0 10 1 IMP8, A > 0 j T [MeV.s.m 2 .sr] -1 10 0 10 -1 10 -2 10 -2 10 -1 10 0 10 1 Kinetic Energy [GeV] 17

  31. Spectra Comparison 10 2 LIS 1987 1997 2009 2019 IMP8, A < 0 10 1 Pamela, A < 0 IMP8, A > 0 j T [MeV.s.m 2 .sr] -1 10 0 10 -1 10 -2 10 -2 10 -1 10 0 10 1 Kinetic Energy [GeV] 18

  32. Summary and Conclusions • Simplified ab initio approach with observational inputs for large scale structures and turbulence quantities relevant to cosmic-ray modulation yields results in reasonable with all three solar minimum data sets. • Preliminary prediction for cycle 25 solar minimum is for intensity even greater than in 2009 • Model is still in the process of extension and refinement to full time dependence 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend