a robust predictable l martingale representation property
play

A Robust Predictable L -Martingale Representation Property for - PowerPoint PPT Presentation

A Robust Predictable L -Martingale Representation Property for Marked Point Processes and Super-Additive Insurance Markets Johannes Leitner TU Vienna December 2, 2008 Content 1. The Economic Model 2. Marked Point Process / Random


  1. A Robust Predictable L ∞ -Martingale Representation Property for Marked Point Processes and Super-Additive Insurance Markets Johannes Leitner TU Vienna December 2, 2008

  2. Content 1. The Economic Model 2. Marked Point Process / Random Measures 3. Super-Additive Markets, No-Arbitrage 4. Irreversible / Dynamic Insurance Markets 5. Completeness / Hedging, Replication 1

  3. The Economic Model • New information arrives at stopping times, • Super-additive (insurance) market, • No-arbitrage, completeness, replication of contingent claims. 2

  4. Marked Point Process • (Ω , F , P ) probability space. ( E, B ) separable metric space, E := E ∪ { ∆ } , ∆ �∈ E . E.g. E = R d \ { 0 } . ¯ • Sequence R + × ¯ E -valued random variables ( T n , X n ) n ≥ 1 with 1. Points: T 0 := 0 < T n < T n +1 on { T n < ∞} , n ≥ 1, 2. Marks: { X n = ∆ } = { T n = ∞} , n ≥ 1. • Interpretation: price, interest rate, etc., jumps by X n at T n . 3

  5. Random Measure Corresponding random measure: � µ ( ω, dt, dx ) = ǫ ( T n ( ω ) ,X n ( ω )) ( dt, dx ) 1 { T n ( ω ) < ∞} , ω ∈ Ω , n ≥ 1 ǫ ( t,x ) probability measure concentrated in ( t, x ) ∈ R + × ¯ E . µ is optional w.r.t. � � F t := F 0 ∨ σ X n 1 [ T n , ∞ ) ( t ) , n ≥ 1 , t ≥ 0. 4

  6. Stochastic Integrals w.r.t. Random Measures H predictable (optional) process, define pathwise (if integral exists): � H ∗ µ t ( ω ) := [0 ,t ] × E H ( ω, s, x ) µ ( ω ; ds, dx ) , ω ∈ Ω . Marked point process: On [0 , sup n ≥ 1 T n ) � H ∗ µ = H ( T n , X n ) 1 [ T n , ∞ ) . n ≥ 1 5

  7. Compensator of a Random Measures Let µ be optional, σ -finite. There exists a unique predictable random measure ˆ µ such that H ∗ µ − H ∗ ˆ µ is a local martingale for all predictable H such that H ∗ µ is of locally integrable total variation. µ is the predictable compensator of µ . ˆ ∃ kernel K from (Ω × R + , P ) into ( E, B ) and non-decreasing predictable process A such that: µ ( ω ; dt, dx ) = K ( ω, t, dx ) dA t ( ω ) . ˆ 6

  8. n ≥ 1 1 [ T n , ∞ ) , Compensator ˆ Counting process N := � N = A Assume throughout • ˆ N is continuous. • ˆ N ∞ is uniformly bounded. 7

  9. Insurance Market K ( t, dx ) describes the law of X n given F t − and T n = t . H ( ω, t, x ) = x 1 x> 0 , λ ≥ 0 security loading : � � � � · ˆ H ∗ µ − H ∗ (1 + λ ) · ˆ = H ∗ µ − E K [ H · ](1 + λ ) µ N is a risk process . 8

  10. Spaces of predictable integrands H : Ω × R + × E → R measurable w.r.t. P ⊗ B (predictable) � � Insurance claim equals H ( ω, t, x ) if T n ( ω ) , X n ( ω ) = ( t, x ) G ∞ := { H predictable } ∩ L ∞ , and for p < ∞ � E | H ( · ; x ) | p K ( · ; dx ) ∈ L ∞ } . G p := { H predictable | 9

  11. Change of measure For q conjugate to p set G ++ := { Y ∈ G q | Y > 0 } . q and M Y := ( Y − 1) ∗ ( µ − ˆ µ ) define Q Y by For Y ∈ G ++ 1 dQ Y = E ( M Y ) ∞ > 0 . dP µ Q Y of µ is given as Y · ˆ W.r.t. Q Y the compensator ˆ µ . 10

  12. Integrability Condition ( H , Y ) := ( G p , G ++ ) satisfies the following condition q (INT) For all ( H, Y ) ∈ H × Y , we have Q Y ∼ P and µ Q Y ) = H ∗ µ − ( HY ) ∗ ˆ H ∗ ( µ − ˆ µ is a uniformly integrable Q Y -martingale. 11

  13. Super-Additive Markets Linear space V 0 ⊆ L 1 ( F 0 ) of initial capitals, H linear space (of actions in a market) Functional W : V 0 × H → L 0 , ( v, H ) �→ W H such that W 0 v = v and v W H + ˆ v + W ˆ H ≥ W H H v . ˆ v +ˆ v 12

  14. EMM Condition Z � = ∅ , Z > 0 for all Z ∈ Z . (EMM) For all ( v, H ) ∈ V 0 × H there exists a Z ∈ Z such that ∈ L 1 , (i) ZW H v (ii) E [ ZW H v | F 0 ] = v . 13

  15. Abstract No-Arbitrage v, ˜ Let ( v, H ) , (˜ H ) ∈ V 0 × H . Under Condition (EMM) we have Proposition. ≤ W ˜ = W ˜ W H H v and W H H and v ≥ ˜ v imply v = ˜ v . v ˜ v ˜ v I.e. a no-domination property holds: ≤ W ˜ < W ˜ W H H and P ( W H H v ) > 0 imply P ( v < ˜ v ) > 0 . v ˜ v ˜ v In particular the no-arbitrage property holds: ≥ v = W 0 W H v implies W H = v. v v 14

  16. Worst Case Scenario Condition Let H × Y ⊆ G p × G ++ , (INT). q (WCS) For all H ∈ H there exists a Y H ∈ Y such that ( HY H ) ∗ ˆ µ ∞ ≤ ( HY ) ∗ ˆ µ ∞ for all Y ∈ Y . 15

  17. The Irreversible Insurance Market Assume ( H , Y ) to satisfy property (WCS). For ( v, H ) ∈ L p ( F 0 ) × H , define v + ( H ∗ µ ) ∞ − ( HY − H ) ∗ ˆ W H := µ ∞ v �� � E HY − H dK · ˆ = v + ( H ∗ µ ) ∞ − N ∞ . 16

  18. Let ( H , Y ) satisfy Conditions (INT) and (WCS). Set Z Y := { dQ Y dP | Y ∈ Y} : Z Y satisfies property (EMM) . I.e. the insurance Proposition. market described by { W H v | v ∈ L p ( F 0 ) , H ∈ H} satisfies the no- domination condition. 17

  19. Irreversible Contracts Y − H does in general not equal Y − H 1 [0 ,t ] on [0 , t ]. Change of contract not possible. Pricing in general not compatible with starting and stopping. 18

  20. Decomposability We say that Y is P - decomposable if Y � = ∅ and Definition. for all A ∈ P and Y, ˜ Y ∈ Y , 1 A Y + 1 A c ˜ Y ∈ Y holds. Y H ∈ Y| � H, Y H � K = essinf Y ∈Y � H, Y � K > −∞ � � Set Y H := for all H ∈ H . If H ⊆ L p and Y is P -decomposable and weakly Proposition. compact in L q , then it satisfies Condition (WCS) and Y H � = ∅ for all H ∈ H . Furthermore, under Condition (INT) no-arbitrage holds. 19

  21. Dynamic Insurance Markets Assume Y to be P -decomposable weakly compact in L q . For ( v, H ) ∈ L p ( F 0 ) × L p choose Y − H ∈ Y − H and define the semimartingale value process v + H ∗ µ − ( HY − H ) ∗ ˆ V v,H := µ �� � E HY − H dK · ˆ = v + H ∗ µ − N. 20

  22. Starting and Stopping Assume Y to be P -decomposable, weakly com- Proposition. pact in L q . Then for all ( v, H ) ∈ L p ( F 0 ) × L p and all stopping times τ 0 ≤ τ 1 , equals V 0 ,H 1 ( τ 0 ,τ 1] on [ τ 0 , τ 1 ] . V v,H − V v,H τ 0 21

  23. Robustness and Uniqueness Assume ( H , Y ) to satisfy (INT), and Y to be P -decomposable, weakly compact in L q . For all ( v, H ) ∈ L p ( F 0 ) ×H , V v,H is a local Q Y -super- Theorem. martingale for all Y ∈ Y and there exists a Y ∈ Y such that V v,H is a uniformly integrable Q Y -martingale. No-arbitrage holds and v, ˜ = V ˜ uniqueness: V v,H H H ) ∈ L p ( F 0 ) × H implies v, ˜ for ( v, H ) , (˜ ∞ ∞ V v,H = V ˜ v, ˜ H . 22

  24. Robust Compensator Define a time-additive/spatially super-additive random measure Y · ˆ µ by µ ) := essinf Y ∈Y � H, Y � K · ˆ H ∗ ( Y · ˆ H ∈ H . N, Y · ˆ µ can be interpreted as a robust compensator for µ w.r.t. the probability measures in the closed convex hull of { Q Y | Y ∈ Y} . V v,H = v + H ∗ µ − H ∗ ( Y · ˆ µ ) is a local Q Y - super-martingale for all Y ∈ Y , resp. a uniformly integrable Q Y -martingale for all Y ∈ Y H . 23

  25. Example Assume insurance contracts, described by H i ∈ H , 1 ≤ i ≤ N , to be given. Consider a market where trading in V i := V 0 ,H i is possible under a short-sale restriction : We assume for all W i ∈ L ∞ i =1 W i · V i is an at- + , that V := � N i =1 V 0 ,W i H i ≤ V 0 ,H for = � N tainable value process. Since V H := � N i =1 W i H i , the resulting market is still arbitrage free, an investor never loses and possibly gains, buying the insurance H instead of trading in the single contracts V i . 24

  26. Main Result to be P -decomposable and Z Y (or Q Y := Assume Y ⊆ G ++ 1 { Q Y | Y ∈ Y} ) to be weakly compact in L 1 ( Ω ), and ( F t ) t ∈ R + to equal the internal filtration generated by µ and F 0 : µ has the robust predictable martingale representa- Theorem. tion property for L ∞ ( F ∞ ) with respect to the closed convex hull of Q Y . 25

  27. Hedging in Dynamic Insurance Markets. We say that Y is P - additive if Y is P -decomposable Definition. and if the predictable process Λ := � 1 , Y � K does not depend on Y ∈ Y . 1 , Q Y -compensator of N : P -additive Y ⊆ G + N Q Y = Λ · ˆ ˆ Y ∈ Y . N, The law of N , resp. ( T i ) i ≥ 1 , under Q Y does not depend on Y ∈ Y . 26

  28. Coherent Risk Measures Y P -additive, weakly compact in G ++ , H ∈ G p : q ρ · ( H ) := − essinf Y ∈Y � H, Y � K Λ − 1 ∈ L 1 (ˆ Ω ) , ( v, H ) ∈ L p ( F 0 ) × G p : V v,H = v + H ∗ µ − ρ · ( − H ) · (Λ · ˆ N ) . 27

  29. Random Set Theory: ρ t : L p ( dK t ) → R : H · ( x ) := H ( · ; x ) , x ∈ E , ˜ ρ · ( H · ) = ρ · ( H ) . ˜ E.g. law invariant risk measure : � 1 0 F ← ρ · ( H · ) := − ˜ ( u ) g · (1 − u ) du, · 28

  30. Representation: Finite Jump Case Ω ) × G ++ H × Y ⊆ L ∞ (˜ . v ∈ L ∞ ( F 0 ) and H ∈ L ∞ (˜ Ω ) 1 Consider the following SDE: V = v + ( H − V − ) ∗ µ + essinf Y ∈Y � V − − H, Y � K · ˆ (1) N. with terminal condition V ∞ = Z ∈ L ∞ . Translation invariance of ρ implies Y − H = Y V − − H ! 29

  31. Linear Inhomogeneous ODE On [ T i , T i +1 ], wlog i = 0, ( T, X ) := ( T 1 , X 1 ): v + ( H − V − ) ∗ µ − � H, Y − H � K · ˆ N + V − · (Λ · ˆ = N ) V � � · (Λ · ˆ v + ( H − V − ) ∗ µ − ρ · ( − H ) − V − = N ) . V T = V T − + ∆ V T = H ( T, X ) on { T < ∞} . We can try to choose v such that V ∞ = Z on { T = ∞} too ! 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend