a
play

a APPLICATIONS OF TEMPERATURE SENSORS I Monitoring N Portable - PowerPoint PPT Presentation

PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING 1 Introduction 2 Bridge Circuits 3 Amplifiers for Signal Conditioning 4 Strain, Force, Pressure, and Flow Measurements 5 High Impedance Sensors 6 Position and Motion Sensors I 7


  1. PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING 1 Introduction 2 Bridge Circuits 3 Amplifiers for Signal Conditioning 4 Strain, Force, Pressure, and Flow Measurements 5 High Impedance Sensors 6 Position and Motion Sensors I 7 Temperature Sensors 8 ADCs for Signal Conditioning 9 Smart Sensors 10 Hardware Design Techniques 7.0 a

  2. APPLICATIONS OF TEMPERATURE SENSORS I Monitoring N Portable Equipment N CPU Temperature N Battery Temperature N Ambient Temperature I Compensation N Oscillator Drift in Cellular Phones N Thermocouple Cold-Junction Compensation I Control N Battery Charging N Process Control 7.1 a

  3. TYPES OF TEMPERATURE SENSORS THERMOCOUPLE RTD THERMISTOR SEMICONDUCTOR Widest Range: Range: Range: Range: –184ºC to +2300ºC –200ºC to +850ºC 0ºC to +100ºC –55ºC to +150ºC High Accuracy and Fair Linearity Poor Linearity Linearity: 1ºC Repeatability Accuracy: 1ºC Needs Cold Junction Requires Requires Requires Excitation Compensation Excitation Excitation Low-Voltage Output Low Cost High Sensitivity 10mV/K, 20mV/K, or 1µA/K Typical Output 7.2 a

  4. COMMON THERMOCOUPLES TYPICAL NOMINAL ANSI JUNCTION MATERIALS USEFUL SENSITIVITY DESIGNATION RANGE (ºC) (µV/ºC) Platinum (6%)/ Rhodium- 38 to 1800 7.7 B Platinum (30%)/Rhodium Tungsten (5%)/Rhenium - 0 to 2300 16 C Tungsten (26%)/Rhenium Chromel - Constantan 0 to 982 76 E Iron - Constantan 0 to 760 55 J Chromel - Alumel –184 to 1260 39 K Platinum (13%)/Rhodium- 0 to 1593 11.7 R Platinum Platinum (10%)/Rhodium- 0 to 1538 10.4 S Platinum Copper-Constantan –184 to 400 45 T 7.3 a

  5. THERMOCOUPLE OUTPUT VOLTAGES FOR TYPE J, K, AND S THERMOCOUPLES 60 THERMOCOUPLE OUTPUT VOLTAGE (mV) 50 TYPE K 40 TYPE J 30 20 TYPE S 10 0 -10 1000 -250 0 250 500 750 1250 1500 1750 TEMPERATURE (°C) 7.4 a

  6. THERMOCOUPLE SEEBECK COEFFICIENT VERSUS TEMPERATURE 70 60 TYPE J SEEBECK COEFFICIENT - µV/ °C 50 TYPE K 40 30 20 TYPE S 10 0 1000 -250 0 250 500 750 1250 1500 1750 TEMPERATURE (°C) 7.5 a

  7. THERMOCOUPLE BASICS A. THERMOELECTRIC VOLTAGE C. THERMOCOUPLE MEASUREMENT Metal A Metal A V1 – V2 Metal A Thermoelectric V2 V1 T1 V1 T1 T2 EMF Metal B Metal B D. THERMOCOUPLE MEASUREMENT B. THERMOCOUPLE Copper Copper V Metal A R Metal A Metal A Metal A T3 T4 I V2 V1 T1 T2 V2 V1 T1 T2 Metal B Metal B R = Total Circuit Resistance V = V1 – V2, If T3 = T4 I = (V1 – V2) / R 7.6 a

  8. CLASSICAL COLD-JUNCTION COMPENSATION USING AN ICE-POINT (0°C) REFERENCE JUNCTION METAL A METAL A V1 – V(0°C) T1 V1 METAL B V(0°C) ICE T2 BATH 0°C 7.7 a

  9. USING A TEMPERATURE SENSOR FOR COLD-JUNCTION COMPENSATION V(OUT) TEMPERATURE COMPENSATION V(COMP) CIRCUIT COPPER COPPER METAL A METAL A SAME TEMP TEMP SENSOR T1 V(T1) V(T2) T2 METAL B V(COMP) = f(T2) ISOTHERMAL BLOCK V(OUT) = V(T1) – V(T2) + V(COMP) IF V(COMP) = V(T2) – V(0°C), THEN V(OUT) = V(T1) – V(0°C) 7.8 a

  10. TERMINATING THERMOCOUPLE LEADS DIRECTLY TO AN ISOTHERMAL BLOCK COPPER V(OUT) = V1 – V(0°C) T2 METAL A COPPER T1 V1 TEMPERATURE COMPENSATION CIRCUIT TEMP SENSOR METAL B COPPER T2 ISOTHERMAL BLOCK 7.9 a

  11. USING A TEMPERATURE SENSOR FOR COLD-JUNCTION COMPENSATION (TMP35) 3.3V TO 5.5V 0.1µF R5* R4* 1.21M Ω Ω 4.99k Ω Ω TMP35 R1* TYPE K 24.9k Ω Ω THERMO P1 COUPLE 50k Ω Ω 0 °C < T < 250 °C – V OUT 0.1 - 2.6V R3* 1.24M Ω Ω OP193 CHROMEL 10mV/°C Cu + R6 + 100k Ω Ω R7* 4.99k Ω Ω COLD 0.1µF JUNCTION FILM – Cu R2* ALUMEL 102 Ω Ω * USE 1% RESISTORS ISOTHERMAL BLOCK 7.10 a

  12. AD594/AD595 MONOLITHIC THERMOCOUPLE AMPLIFIERS WITH COLD-JUNCTION COMPENSATION +5V 0.1µF BROKEN 4.7k Ω Ω V OUT THERMOCOUPLE 10mV/°C ALARM OVERLOAD DETECT TYPE J: AD594 TYPE K: AD595 AD594/AD595 THERMOCOUPLE +A –TC – – ICE G + G POINT + + COMP +TC 7.11 a

  13. AD77XX ADC USED WITH TMP35 TEMPERATURE SENSOR FOR CJC 3V OR 5V (DEPENDING ON ADC) 0.1µF AIN1+ CONTROL REGISTER TMP35 AIN1– Σ∆ Σ∆ OUTPUT MUX THERMO PGA REGISTER ADC COUPLE AIN2+ G=1 TO 128 SERIAL INTERFACE AD77XX SERIES AIN2– (16-22 BITS) TO MICROCONTROLLER 7.12 a

  14. RESISTANCE TEMPERATURE DETECTORs (RTD) I Platinum (Pt) the Most Common I 100 Ω, Ω, 1000 Ω Ω Standard Values I Typical TC = 0.385% / °C, 0.385 Ω / Ω / °C for 100 Ω Ω Pt RTD I Good Linearity - Better than Thermocouple, Easily Compensated 0.400 11.5 RTD TYPE S 100 Ω Ω Pt RTD RESISTANCE THERMOCOUPLE 10.5 0.375 TYPE S TC, ∆Ω ∆Ω / °C SEEBECK THERMOCOUPLE COEFFICIENT, 9.50 0.350 µV / °C 8.50 0.325 7.50 0.300 6.50 0.275 5.50 0 400 800 TEMPERATURE - °C 7.13 a

  15. A 100 Ω Ω Pt RTD WITH 100 FEET OF 30-GAUGE LEAD WIRES R = 10.5 Ω Ω COPPER 100 Ω Ω Pt RTD R = 10.5 Ω Ω COPPER RESISTANCE TC OF COPPER = 0.40%/°C @ 20°C RESISTANCE TC OF Pt RTD = 0.385%/ °C @ 20°C 7.14 a

  16. FOUR-WIRE OR KELVIN CONNECTION TO Pt RTD FOR ACCURATE MEASUREMENTS FORCE SENSE R LEAD LEAD LEAD TO HIGH - Z 100 Ω Ω I IN-AMP OR ADC Pt RTD FORCE SENSE R LEAD LEAD LEAD 7.15 a

  17. INTERFACING A Pt RTD TO A HIGH RESOLUTION ADC 3V OR 5V (DEPENDING ON ADC) +VREF R REF 6.25k Ω Ω –VREF CONTROL REGISTER + AIN1+ 400µA 100 Ω Ω Σ∆ Σ∆ MUX OUTPUT Pt RTD PGA REGISTER ADC – AIN1– G=1 TO 128 SERIAL INTERFACE AD77XX SERIES (16-22 BITS) TO MICROCONTROLLER 7.16 a

  18. CONDITIONING THE PLATINUM RTD USING THE ADT70 +5V 0.1µF 1k Ω Ω Pt RTD ADT70 + 2.5V 1k Ω Ω REF REFERENCE – RES MATCHED 1mA SOURCES SHUT + DOWN INST AMP GND – REF OUT = 5mV/ °C R G = 50k Ω Ω Note: Some Pins Omitted for Clarity -1V TO -5V 7.17 a

  19. RESISTANCE CHARACTERISTICS OF A 10k Ω Ω NTC THERMISTOR 40 ALPHA THERMISTOR, INCORPORATED 30 RESISTANCE/TEMPERATURE CURVE 'A' 10 k Ω Ω THERMISTOR, #13A1002-C3 THERMISTOR RESISTANCE k Ω Ω 20 10 Nominal Value @ 25 °C 0 0 20 40 60 80 100 TEMPERATURE - °C 7.18 a

  20. TEMPERATURE COEFFICIENT OF 10k Ω Ω NTC THERMISTOR -60000 ALPHA THERMISTOR, INCORPORATED -50000 RESISTANCE/TEMPERATURE CURVE 'A' 10 k Ω Ω THERMISTOR, #13A1002-C3 THERMISTOR TEMPERATURE COEFFICIENT ppm/ °C -40000 -30000 -20000 0 20 40 60 80 100 TEMPERATURE - °C 7.19 a

  21. LINEARIZATION OF NTC THERMISTOR USING A 5.17k Ω Ω SHUNT RESISTOR 40 30 RESISTANCE k Ω Ω 20 THERMISTOR PARALLEL COMBINATION 10 0 0 20 40 60 80 100 TEMPERATURE - °C 7.20 a

  22. LINEARIZED THERMISTOR AMPLIFIER V OUT ≈ ≈ 0.994V @ T = 0°C 226µA V OUT ≈ ≈ 0.294V @ T =70°C ∆ V OUT / ∆ ∆ ∆ T ≈ − ≈ − 10mV/°C AMPLIFIER OR ADC 10k Ω Ω NTC 5.17k Ω Ω THERMISTOR LINEARIZATION RESISTOR LINEARITY ≈ ± ≈ ± 2°C, 0°C TO +70°C 7.21 a

  23. BASIC RELATIONSHIPS FOR SEMICONDUCTOR TEMPERATURE SENSORS I C I C N TRANSISTORS ONE TRANSISTOR V BE V N         kT IC kT IC = = = =         VBE ln VN ln       ⋅ ⋅   q IS q N IS kT ∆ VBE ∆ = = − − = = VBE VN ln( ) N q INDEPENDENT OF I C , I S 7.22 a

  24. CLASSIC BANDGAP TEMPERATURE SENSOR +V IN "BROKAW CELL" R R V BANDGAP = 1.205V + I 2 ≅ ≅ I 1 Q2 Q1 NA A V N V BE kT (Q1) ∆ ∆ VBE = = − − = = VBE VN ln( ) N R2 q R1 kT V PTAT = 2 ln(N) q R2 R1 7.23 a

  25. CURRENT OUTPUT SENSORS: AD592, TMP17 V+ AD592: TO-92 PACKAGE TMP17: SO-8 PACKAGE V– I 1µA/K Scale Factor I Nominal Output Current @ +25°C: 298.2µA I Operation from 4V to 30V I ± ± 0.5°C Max Error @ 25°C, ± ± 1.0°C Error Over Temp, ± ± 0.1°C Typical Nonlinearity (AD592CN) I ± ± 2.5°C Max Error @ 25°C, ± ± 3.5°C Error Over Temp, ± ± 0.5°C Typical Nonlinearity (TMP17F) I AD592 Specified from –25°C to +105°C I TMP17 Specified from –40°C to +105°C 7.24 a

  26. RATIOMETRIC VOLTAGE OUTPUT SENSORS V S = +3.3V 0.1µF REFERENCE I(V S ) ADC + V OUT INPUT – R(T) GND AD22103     VS 28 mV = = × × + + × ×     VOUT 0 25 . V TA     ° ° 3 3 . V C 7.25 a

  27. ABSOLUTE VOLTAGE OUTPUT SENSORS WITH SHUTDOWN +V S = 2.7V TO 5.5V SHUTDOWN ALSO V OUT SO-8 TMP35 OR TO-92 TMP36 TMP37 0.1µF SOT-23-5 I V OUT : N TMP35, 250mV @ 25°C, 10mV/°C (+10°C to +125°C) N TMP36, 750mV @ 25°C, 10mV/°C (–40°C to +125°C) N TMP37, 500mV @ 25°C, 20mV/°C ( +5°C to +100°C) I ± ± 2°C Error Over Temp (Typical), ± ± 0.5°C Non-Linearity (Typical) I Specified –40°C to +125°C I 50µA Quiescent Current, 0.5µA in Shutdown Mode 7.26 a

  28. ADT45/ADT50 ABSOLUTE VOLTAGE OUTPUT SENSORS +V S = 2.7V TO 12V V OUT ADT45 ADT50 0.1µF SOT-23 I V OUT : N ADT45, 250mV @ 25°C, 10mV/°C Scale Factor N ADT50, 750mV @ 25°C, 10mV/°C Scale Factor I ± ± 2°C Error Over Temp (Typical), ± ± 0.5°C Non-Linearity (Typical) I Specified –40°C to +125°C I 60µA Quiescent Current 7.27 a

  29. THERMAL RESPONSE IN FORCED AIR FOR SOT-23-3 35 SOT-23-3 SOLDERED TO 0.338" x 0.307" Cu PCB V+ = 2.7V TO 5V 30 NO LOAD 25 TIME CONSTANT- SECONDS 20 15 10 5 0 500 0 100 200 300 400 600 700 AIR VELOCITY - LFPM 7.28 a

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend