a posteriori error estimators for a model for flow in a
play

A posteriori error estimators for a model for flow in a porous - PowerPoint PPT Presentation

A posteriori error estimators for a model for flow in a porous medium with fractures Zoubida MGHAZLI (LIRNE, EIMA, Universit e Ibn Tofail, K enitra, Morocco) Jean E. ROBERTS (INRIA-Roquencourt, France) Ali SAADA (LAMSIN-ENIT,Tunisia)


  1. A posteriori error estimators for a model for flow in a porous medium with fractures Zoubida MGHAZLI (LIRNE, EIMA, Universit´ e Ibn Tofail, K´ enitra, Morocco) Jean E. ROBERTS (INRIA-Roquencourt, France) Ali SAADA (LAMSIN-ENIT,Tunisia) Scaling Up and Modeling for Transport and Flow in Porous Media Dubrovnik, 13-16 October , 2008 Supported by the project MODESS-INRIA and project AI-Morocco-Tunisia 1

  2. I) Introdution Ω ⊂ R n , n = 2 , 3 , ¯ Ω f = fracture; Ω \ ¯ Ω f = Ω 1 ∪ Ω 2 , Ω 1 ∩ Ω 2 = ∅ ; Ω f ≡ γ : hyperplane; Γ = ∂ Ω , Γ i := ∂ Ω ∩ Ω i , i = 1 , 2 ; Z [2] is so that 1+1=2 and 2+1=1 , (cf V.Martin, J. Jaffr´ e, J. Roberts, 2005 )  u i = − K i ∇ p i in Ω i , i = 1 , 2   div u i = q i in Ω i , i = 1 , 2     u f = − K f ∇ τ p f on γ,     2    �  div τ u f = q f + u i · n i on γ,    i =1 d  [ ξu i · n i ( ξ ∈ ]1 / 2 , 1]) p i = p f +   2 K f     − (1 − ξ ) u i +1 · n i +1 ] on γ, i ∈ Z [2]      p i = ¯ p i on Γ i , i = 1 , 2     p f = ¯ p f on ∂γ.  2

  3. 3

  4. Weak Formulation  u ∈ W, p ∈ M  a ξ ( u, v ) − β ( v, p ) = − L d ( v ) , ∀ v ∈ W β ( u, r ) = L q ( r ) , ∀ r ∈ M.  { v = ( v 1 , v 2 , v f ) ∈ Π 2 i =1 H ( div ; Ω i ) × H ( div ; γ ) : v i · n i ∈ L 2 ( γ ) , i = 1 , 2 } W = { r = ( r 1 , r 2 , r γ ) ∈ L 2 (Ω 1 ) × L 2 (Ω 2 ) × L 2 ( γ ) } M = 2 � ( K − 1 u i , v i ) Ω i + ( K − 1 a ξ ( u, v ) = f u f , v f ) γ i i =1 � d 2 � � + [ ξu i · n i − (1 − ξ ) u i +1 · n i +1 ] , v i · n i , 2 K f γ i =1 � 2 2 � � � ( div u i , r i ) Ω i + ( div τ u f , r f ) γ − u i · n i , r f β ( u, r ) = , i =1 i =1 γ 2 n � � L q ( r ) = ( q i , r i ) Ω i + ( q f , r f ) γ , L d ( v ) = ( v i · n i , ¯ p i ) Γ i + ( v f · n f , ¯ p f ) ∂γ . i =1 i =1 4

  5. Norms in M and W 2 � � r � 2 � r i � 2 0 , Ω i + � r f � 2 M = 0 ,f i =1 2 2 � � � � � v � 2 � v i � 2 0 , Ω i + � div v i � 2 + � v f � 2 0 ,γ + � div τ v f � 2 � v i · n i � 2 W = 0 ,γ + 0 ,γ . 0 , Ω i i =1 i =1 Unique Solution : a ξ ( · , · ) is ˜ W − elliptic: a ξ ( v, v ) ∃ C α > 0 , inf ≥ C α � v � 2 v ∈ ˜ W W ˜ W = { v ∈ W : β ( v, r ) = 0 ∀ r ∈ M } β ( · , · ) satisfies the inf-sup condition: β ( v, r ) ∃ C β > 0 , r ∈ M sup inf ≥ C β . � v � W � r � M v ∈ W (cf. V.Martin, J. Jaffr´ e, J. Roberts, 2005) 5

  6. Discretization with RT 0 � Z i = H ( div ; Ω i ) , i = 1 , 2 , Z = Z i i=1 , 2 � N i = L 2 (Ω i ) , N i = L 2 (Ω) . i = 1 , 2 , N = i =1 , 2 Z h,i × N h,i ⊂ Z i × N i , i = 1 , 2 W h,γ ⊂ H ( div τ ; γ ) , Λ h = P 0 ( γ ) � � Z h,i ⊕ W h,γ , N h,i ⊕ Λ h . W h = M h = i =1 , 2 i =1 , 2  u h ∈ W h , p h ∈ M h  a ξ ( u h , v ) − β ( v, p h ) = − L d ( v ) , ∀ v ∈ W h β ( u h , r ) = L q ( r ) , ∀ r ∈ M h .  Π h : W → W h interpolation operateur in RT 0 and P h : M → M h is the L 2 -projection. 6

  7. II) A posteriori error estimate Introduction → a priori error estimates � u − u h �≤ F ( h, u, f ) → only yield information on the asymptotic error behaviour → require regularity assumptions about u which is not satis- fied in the presence of singularity (as sharp fronts, wells,...) → overall accuracy of the numerical approximation is deteri- ored by local singularity Obvious remedy: → to refine the discretization near the critical regions = to place more grid point where the solution is less regular. → how to identify those regions, → how to obtain a good balance between the refined and unrefined regions such that the overall accuracy is ”optimal”. 7

  8. Obtain reliable estimates of the accuracy of the computed numerical solution The need: error estimator which can, a posteriori , be extracted from the computed numerical solution and the given data of the problem Reasonable error estimator should at least satisfy three minimal requirements Reliability = estimator yields upper bounds on the error � u − u h � V ≤ G ( u h , f h , f ) u h is the computed solution. Efficiency = estimator yields lower bounds on the error G ( u h , f h , f ) ≤ C � u − u h � V Locality = information on the local distribution of the error. T ) 1 / 2 , � η 2 G ( u h , f h , f ) = ( η T ≤ C � u − u h � W ( T ) T ∈T h η T : Local error estimator 8

  9. Principal tools e h = u − u h , ε h = p − p h . The residual equations � a ξ ( e h , v ) − β ( v, ε h ) = − L d ( v ) − a ξ ( u h , v ) + β ( v, p h ) , ∀ v ∈ W β ( e h , r ) = L q ( r ) − β ( u h , r ) , ∀ r ∈ M. The orthogonality property � a ξ ( e h , v h ) − β ( v h , ε h ) = 0 , ∀ v h ∈ W h β ( e h , r h ) = 0 , ∀ r h ∈ M h . Local interpolation error bounds on elements and faces 9

  10. Residual error estimators Notations: T ih : for i=1,2, regular families of triangulations of Ω i by closed triangles ( n = 2 ) or tetrahedra ( n = 3 ) and T fh : regular families of triangula- tions of the hyperplane γ by closed segments ( n = 2 ) or triangles ( n = 3 ). E ih : the set of the edges or faces E of T ih ,and E 0 ih := E ih \ (Γ i ∪ γ ) , E Γ ih := E ih ∩ Γ i , E γ ih := E ih ∩ γ , E fh the set of the edges of T fh , E 0 fh := E fh \ ∂γ . For w h ∈ W h the tangential component of w h on a face E is defined by  w h · t E in 2D  ( w h ) τ,E := w h × n E in 3D  and, if [ · ] E denote the jump across E , we define the jump of K − 1 v h in the tangential direction across E by 1  2[( K − 1 u h ) τ,E ] E if E ∩ Γ i = ∅   J t,E ( u h ) :=  ( K − 1 u h + ∇ ( P h ¯ p i )) τ,E if E ∩ Γ i � = ∅ ,  10

  11. For any T ∈ T i,h , for i = 1 , 2 , and for any t ∈ T f,h , η ( i ) h T � K − 1 η t := h t � K − 1 u ih + ∇ p ih � 0 ,T f u fh + ∇ τ p fh � 0 ,t := T i ζ ( i ) h 1 / 2 h T � curl ( K − 1 � := u h,i ) � 0 ,T + E � J t,E ( u h,i ) � 0 ,E T i E ∈ ∂T h t � curl ( K − 1 � h 1 / 2 ζ t := f u h,f ) � 0 ,t + � J t,e ( u h,f ) � 0 ,e e e ∈ ∂t ω ( i ) := � ( q i − P hi q i ) � 0 ,T ω t := � ( q f − P hf q f ) � 0 ,t T ω ( i ) h 1 / 2 ω t := h 1 / 2 := T � P h ¯ p i − ¯ p i � 0 ,∂T ∩ Γ i � P h ¯ p f − ¯ p f � 0 ,∂t ∩ ∂γ t T d δ ( i ) h 1 / 2 � p ih − p fh − ( ξu ih · n i − (1 − ξ ) u i +1 ,h · n i +1 ) � 0 ,t := t t 2 K f Upper bound on the velocity Proposition 1 : The error e u is bounded from above by the indicators 2 � � ζ ( i ) T + ω ( i ) T + ω ( i ) � � � � e u � W � + ( ζ t + ω t + ω t ) (1) T i =1 T ∈T ih t ∈T fh 11

  12. Proof : for i=1,2,f (as in Hoppe and Wohlmuth (1999)) H ( div ; Ω i ) = H 0 ( div ; Ω i ) ⊕ H 1 ( div ; Ω i ) where H 0 ( div ; Ω i ) := { v i ∈ H ( div ; Ω i ) , s.t. div v i = 0 , and ( v i · n i ) | γ = 0 } H 1 ( div ; Ω i ) := { v i ∈ H ( div ; Ω i ) , s.t. ; � K − 1 w 0 i v i dx = 0 , ∀ w 0 i ∈ H 0 ( div ; Ω i ) } . i Ω i For n=2 we have H 0 ( div ; γ ) = { 0 } and so H ( div ; γ ) = H 1 ( div ; γ ) = H 1 ( γ ) . 12

  13. Notations W 0 = H 0 ( div ; Ω 1 ) × H 0 ( div ; Ω 2 ) × H 0 ( div τ ; γ ) W 1 = H 1 ( div ; Ω 1 ) × H 1 ( div ; Ω 2 ) × H 1 ( div τ ; γ ) u = u 0 + u 1 u 0 ∈ W 0 , ∀ v 0 ∈ W 0 , a ξ ( u 0 , v 0 ) = − L d ( v 0 ) , (2) u 1 ∈ W 1 , β ( u 1 , r ) = L q ( r ) , ∀ r ∈ M. (3) The problems (2) and (3) are independent, and we check suc- cessively bounds of e 0 u and e 1 u . 13

  14. • v 0 = curl φ ∈ W 0 , φ h := P C h φ , and v 0 h = curlφ h − L d ( v 0 − v 0 h ) − a ξ ( u h , v 0 − v 0 a ξ ( e u , v 0 ) = h )  � 2 �� �   � � curl ( K − 1 � = u h,i )( φ i − φ ih ) + J t,E ( u h,i )( φ i − φ ih ) i T E   i =1 T ∈T ih E ⊂ ∂T �� � � � curl ( K − 1 � + f u h,f )( φ f − φ fh ) + J t,e ( u h,f )( φ f − φ fh ) t e t ∈T fh e ∈ ∂t 2 � + ( curl ( φ i − φ ih ) · n i , (¯ p i − ¯ p ih ) Γ i i =1 +( curl ( φ f − φ fh ) · n f , ¯ p f − p fh ) ∂γ . v 0 = e 0 u gives 2 � � ζ ( i ) ω ( i ) � � � � e 0 u � 0 = � e 0 u � div � T + ¯ + ( ζ t + ¯ ω t ) . T i =1 T ∈T ih t ∈T fh 14

  15. • From the approximate problem we have divu ih = P ih q i for i = 1 , 2 � 2 � � u ih · n i + q f divu fh = P fh i =1 � 2 � 1 / 2 2 � � � dive 1 u i � 2 0 , Ω i + � dive 1 u f � 2 e 1 u i · n i � 2 0 , Ω f + � 0 ,γ i =1 i =1 ω ( i ) � � � T + ω t T ∈T ih t ∈T fh 15

  16. Upper bound on the pressure Proposition 2 The error ε p is bounded from above by the indicators   2  � �  η ( i ) T + ω ( i ) T + ω ( i ) δ ( i ) � � � � ε p � W � + t T   i =1 T ∈T ih t ∈T fh � ( η t + ω t + ω t ) t ∈T fh Proof : Dual problem (for the pressure)  Find v ∈ W, ¯ r ∈ M solution of ¯  a ξ (¯ v, v ) − β ( v, ¯ r ) = 0 , ∀ v ∈ W β (¯ v, r ) = − ( ε p , r ) , ∀ r ∈ M.  Regularity result ∃ C s > 0 , � ¯ v � 1 + � ¯ r � 1 ≤ C s � ε h � M . Lower bound on the error by standards arguments 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend