a personal glance at george s category theory
play

A Personal Glance at Georges Category Theory Walter Tholen York - PowerPoint PPT Presentation

A Personal Glance at Georges Category Theory Walter Tholen York University, Toronto Coimbra, 2012 Walter Tholen (York University, Toronto) Georges Category Theory Coimbra, 2012 1 / 29 George Janelidze 19 May 1952 1974 Diploma


  1. A Personal Glance at George’s Category Theory Walter Tholen York University, Toronto Coimbra, 2012 Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 1 / 29

  2. George Janelidze 19 May 1952 1974 Diploma Tbilisi State University 1978 Ph.D. Tbilisi State University 1992 D.Sc. St.-Petersburg State University Georgian Academy of Sciences (since 1975) McGill, York, Milan, Chicago, Bielefeld, Sydney Hungarian Academy of Sciences, Trieste, Genova, Wales (at Bangor) Tours, Louvain-la-Neuve, Littoral (at Calais), Coimbra Insubria (at Como), Aveiro, IST Lisbon, . . . University of Cape Town (since 2004) Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 2 / 29

  3. Major areas of work Categorical Galois Theory Descent Theory Categories for Algebra Categories for Topology Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 3 / 29

  4. Categorical Galois Theory Galois Theory in categories with inclusions (Proc. Junior Sci. 1974) The fundamental theorem of Galois Theory (USSR Sbornik 1989) Pure Galois Theory in Categories (J. Algebra 1990) ◮ Galois Theories (Cambridge 2001, with F. Borceux) Categorical Galois Theory: Revision and some recent developments (Potsdam 2001) Descent and Galois Theory (Haute Bodeux 2007) Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 4 / 29

  5. Central extensions – Classically A α − → B surjective ( A , α ) ∈ ( Grp ↓ B ) central extension ⇐ ⇒ ker α ⊆ centre ( A ) ( A , α ) trivial central extension ⇒ ( A , α ) ∼ ⇐ = ( K × B , K × B − → B ) with K Abelian Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 5 / 29

  6. � � � Central extensions – Categorically ( A , α ) ∈ ( Grp ↓ B ) central extension ⇐ ⇒ ∃ p : E − → B surjective such that p ∗ ( A , α ) trivial: E × B A A α π 1 � B E p ⇐ ⇒ : ( A , α ) split over ( E , p ) Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 6 / 29

  7. Separable extensions – Classically α ← − B in CR , B field A Example f ∈ B [ x ] , deg f � 1 , B f = B [ x ] / ( f ) ← − B Facts ⇒ B f ∼ f = g · h , ( g , h ) = 1 = = B g × B h B ( x − b ) n ∼ = B x n n � f separable ⇐ ⇒ f = a · ( x − b i ) , b i � = b j for i � = j i = 1 ⇒ B f ∼ ⇐ = B × . . . × B ⇐ ⇒ B f is a trivial B -algebra Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 7 / 29

  8. � � � � Separable extensions – Classically (continued) If f ∈ B [ x ] does not split: ∃ E ⊇ B such that f ∈ E [ x ] splits, E f ∼ = E ⊗ B B f f separable ⇐ ⇒ E ⊗ B B f trivial E -algebra E ⊗ B B f B f trivial E � � B Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 8 / 29

  9. � � � � � Separable extensions – Categorically A separable B -algebra ⇐ ⇒ dim B A < ∞ , ∀ a ∈ A : a separable over B ⇐ ⇒ ∃ field extension E � � : E ⊗ B A trivial E -algebra B ⇐ ⇒ : A is split over B E ⊗ B A A α E B Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 9 / 29

  10. �� � � � Covering spaces – Classically A α − → B local homeomorphism ⇐ ⇒ ( A , α ) ´ etale space over B Very trivial example ∼ = A = � A i ⊆ A open, A i − → B A i (disjoint) i ∈ I α B Trivial example B = � B λ (disjoint) λ ∈ Λ B λ ⊆ B open, α − 1 ( B λ ) − → B λ very trivial Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 10 / 29

  11. � � Covering spaces – Categorically ( A , α ) covering space over B ⇒ ∀ b ∈ B ∃ open V ∋ b in B : α − 1 ( V ) − ⇐ → V very trivial p ⇐ ⇒ ∃ E − → B surjective, ´ etale: � A p ⋆ ( A , α ) trivial E × B A α � B E p ⇐ ⇒ : ( A , α ) split over ( E , p ) Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 11 / 29

  12. � � � � � ✤ The machinery of adjunctions I � X , C with pullbacks, B ∈ C C ⊥ H I B � ( X ↓ IB ) � HX ( C ↓ B ) B × HIB HX ⊥ H B π 1 H ϕ � HIB � ( IA , I α ) B ( A , α ) ✤ η B ( B × HIB HX , π 1 ) ( X , ϕ ) Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 12 / 29

  13. � � � Split objects η A � HIA ( A , α ) trivial : ⇐ ⇒ pullback A α HI α � HIB B η B ⇒ p ∗ ( A , α ) trivial ( A , α ) split over ( E , p ) : ⇐ Example 1 � AbGrp Grp ⊥ α , p surjective, E free Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 13 / 29

  14. � � � ✤ Split objects, continued Example 2 � FinSet ( CR op ↓ k ) fin ⊥ � { minimal non-zero idempotents } A ✤ k × . . . × k X � �� � X times p � � fields E B Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 14 / 29

  15. � � ✤ Split objects, continued Example 3 � Set LCTop ⊥ � π 0 B B ✤ (discrete) X X p : E − → B surjective, ´ etale Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 15 / 29

  16. � George’s Galois Theorem I � X C F ⊆ mor C , Φ ⊆ X : “ fibrations ” ⊥ H Hypothesis – pullbacks of fibrations exist and are fibrations – isomorphisms are fibrations, closed under composition – I and H preserve fibrations – (“ Admissibility ”) φ : X − → IB fibration ⇒ ( I ( B × HIB HX ) − → IHX − → X ) isomorphism Theorem → F ( E ) monadic ⇒ Spl ( E , p ) ≃ X Gal ( E , p ) � Φ p ∗ : F ( B ) − Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 16 / 29

  17. � � � � � � � � � � George’s Galois Theorem (continued) Spl ( E , p ) TrivCov ( E ) Φ( IE ) ≃ (admissible) H E pullback � Φ( E ) Φ( B ) Φ( E ) Id Gal ( E , p ) = I ( Eq ( p )) = ( I ( E × B E × B E ) ��� I ( E × B E ) � I ( E ) ) Ic X Gal ( E , p ) ∋ ( A 0 , π, ξ ) ξ � A 0 I ( E × B E ) × ( Id ,π ) A 0 π � IE I ( E × B E ) Ic First proof generalizing Magid’s Theorem: 1984. In full generality: 1991 Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 17 / 29

  18. � � � � � � � � � � Descent Theory � C p : E − → B effective (for) descent E × B C ⇒ p ! ⊣ p ∗ : F ( B ) − γ ⇐ → F ( E ) monadic � E E × B E ⇐ ⇒ rebuild F ( B ) from F ( E ) as p { ( C , γ ; ξ ) : ξ : E × B C − → C , 2 equations } � B E p Equivalent presentation of ξ : ξ C p · γ π 2 ξ � E × B C E × B C B π 1 p E γ · π 2 Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 18 / 29

  19. � � � Descent Theory (continued) F ( B ) = ( Top ↓ B ) ξ x , y � γ − 1 y γ − 1 x ( x , y ) ∈ E × B E c ❴ j y , x j x , y ξ ( x , c ) � E × B C E × B C ξ x , x = id, ξ x , z = ξ y , z · ξ x , y ( p ( x ) = p ( y ) = p ( z )) , Glueing Condition Example p E = � � B = � U i ( U i ⊆ B open) U i i ∈ I i ∈ I � U j ) � U j ) satisfying the Cocycle Condition ξ i , j : γ − 1 � γ − 1 ( U i ( U i i j Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 19 / 29

  20. � � � � � � � � � � � � Descent Theory (continued) Categorical Algebra Internal Category Topology (commutators) Theory (crossed modules) Sheaf & Galois Theory Descent Theory Cohomology Theory Monad Theory Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 20 / 29

  21. Descent Theory (continued) Two of George’s “simple” observations: descent � = effective descent, even in algebra: { A ∈ AbGrp | n 2 x = 0 ⇒ nx = 0 } , p : Z − → Z / n Z C � � � D closed under pullbacks, p : E − → B in C , effective descent in D . Then: p effective descent in C ⇐ ⇒ ∀ ( A , α ) ∈ ( D ↓ B ) : p ∗ ( A , α ) ∈ ( C ↓ E ) ⇒ ( A , α ) ∈ ( C ↓ B ) � Reiterman-T characterization of effective descent morphisms in Top � Clementino-Hofmann characterization of effective descent mor- phisms in Top Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 21 / 29

  22. � � � � � � � Descent Theory (continued) PreOrd ∼ FinPreOrd ∼ = Alexandroff , = FinTop � y x E universal quotient: p (=descent) � v u B � = � y � z x effective descent: � v � w u � = � x n − 1 � . . . � x 1 � x 0 x n triquotient: � u n − 1 � . . . � u 1 � u 0 u n Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 22 / 29

  23. � � � � � � � � Semi-Abelian Categories Mac Lane, Duality for groups, Bull. AMS 1950 “Abelian bicategory” � “exact category” (Buchsbaum 1955) = abelian category � abelian category AbGrp Grp � ? Old-style generalizations in the realm of pointed/additive categories Walter Tholen (York University, Toronto) George’s Category Theory Coimbra, 2012 23 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend