a note on mixed norm spaces
play

A Note on Mixed Norm Spaces Nadia Clavero University of Barcelona - PowerPoint PPT Presentation

A Note on Mixed Norm Spaces Nadia Clavero University of Barcelona Seminari SIMBa April 28, 2014 1/21 Introduction 1 Sobolev embeddings in rearrangement-invariant Banach spaces 2 Sobolev embeddings in mixed norm spaces 3 Critical case of


  1. A Note on Mixed Norm Spaces Nadia Clavero University of Barcelona Seminari SIMBa April 28, 2014 1/21

  2. Introduction 1 Sobolev embeddings in rearrangement-invariant Banach spaces 2 Sobolev embeddings in mixed norm spaces 3 Critical case of the classical Sobolev embedding 4 2/21

  3. Introduction Rearrangement-invariant Banach function spaces n � �� � Given a finite interval I , we denote I n = I × . . . × I , n ∈ N . Definition A rearrangement invariant Banach function space (briefly an r.i. space) is defined as � � � � X ( I n ) = f ∈ M ( I n ) : � f � X ( I n ) < ∞ , � � � · � where X ( I n ) satisfies certain properties. Examples The Lebesgue spaces L p ( I n ) , where  � � � 1 / p ,  I n | f ( x ) | p dx 1 ≤ p < ∞ ; � � � f � L p ( I n ) = � �  inf C ≥ 0 : | f ( x ) | ≤ C a.e , p = ∞ . 3/21

  4. Introduction Mixed norm spaces Let n ∈ N , n ≥ 2 and k ∈ { 1 , . . . , n } . For any x ∈ I n , we denote x k = ( x 1 , . . . , x k − 1 , x k +1 , . . . , x n ) ∈ I n − 1 . � Definition The Benedek-Panzone spaces are defined as � � � � f ∈ M ( I n ) : � f � R k ( X , Y ) = R k ( X , Y ) < ∞ , � � � � � � � f � � ψ k ( f , Y ) � � f ( � � where R k ( X , Y ) = X ( I n − 1 ) , ψ k ( f , Y )( � x k ) = x k , · ) Y ( I ) . 4/21

  5. Introduction Mixed norm spaces Examples: The Lebesgue spaces L 1 ( I ) = R 1 ( L 1 , L 1 ); � � � � � � f � I n − 1 ψ 1 ( f , L 1 )( � R 1 ( L 1 , L 1 ) = x 1 ) d � x 1 = | f ( � x 1 , x 1 ) | dx 1 d � x 1 . I n − 1 I The Benedek-Panzone spaces R n ( L 1 , L 2 ); � � � � � 1 / 2 � � � f � I n − 1 ψ n ( f , L 2 )( � x n , x n ) | 2 dx n R n ( L 1 , L 2 ) = x n ) d � x n = | f ( � d � x n . I n − 1 I The Benedek-Panzone spaces R k ( L 3 , L ∞ ); � � � 1 / 3 � � � 1 / 3 � � � � 3 d � � � 3 � f � ψ k ( f , L ∞ )( � � f ( � � R k ( L 3 , L ∞ ) = x k ) x k = x k , · ) d � x k . L ∞ ( I ) I n − 1 I n − 1 5/21

  6. Introduction Mixed norm spaces Examples: The Lebesgue spaces L 1 ( I ) = R 1 ( L 1 , L 1 ); � � � � � � f � I n − 1 ψ 1 ( f , L 1 )( � R 1 ( L 1 , L 1 ) = x 1 ) d � x 1 = | f ( � x 1 , x 1 ) | dx 1 d � x 1 . I n − 1 I The Benedek-Panzone spaces R n ( L 1 , L 2 ); � � � � � 1 / 2 � � � f � I n − 1 ψ n ( f , L 2 )( � x n , x n ) | 2 dx n R n ( L 1 , L 2 ) = x n ) d � x n = | f ( � d � x n . I n − 1 I The Benedek-Panzone spaces R k ( L 3 , L ∞ ); � � � 1 / 3 � � � 1 / 3 � � � � 3 d � � � 3 � f � ψ k ( f , L ∞ )( � � f ( � � R k ( L 3 , L ∞ ) = x k ) x k = x k , · ) d � x k . L ∞ ( I ) I n − 1 I n − 1 5/21

  7. Introduction Mixed norm spaces Examples: The Lebesgue spaces L 1 ( I ) = R 1 ( L 1 , L 1 ); � � � � � � f � I n − 1 ψ 1 ( f , L 1 )( � R 1 ( L 1 , L 1 ) = x 1 ) d � x 1 = | f ( � x 1 , x 1 ) | dx 1 d � x 1 . I n − 1 I The Benedek-Panzone spaces R n ( L 1 , L 2 ); � � � � � 1 / 2 � � � f � I n − 1 ψ n ( f , L 2 )( � x n , x n ) | 2 dx n R n ( L 1 , L 2 ) = x n ) d � x n = | f ( � d � x n . I n − 1 I The Benedek-Panzone spaces R k ( L 3 , L ∞ ); � � � 1 / 3 � � � 1 / 3 � � � � 3 d � � � 3 � f � ψ k ( f , L ∞ )( � � f ( � � R k ( L 3 , L ∞ ) = x k ) x k = x k , · ) d � x k . L ∞ ( I ) I n − 1 I n − 1 5/21

  8. Introduction Mixed norm spaces Definition The mixed norm spaces R ( X , Y ) are defined as follows n � R ( X , Y ) = R k ( X , Y ) . k =1 � � � � R ( X , Y ) = � n � f � � f � For each f ∈ R ( X , Y ) , we set R k ( X , Y ) . k =1 Examples: The Lebesgue spaces L p ( I n ) = R ( L p , L p ) , 1 ≤ p ≤ ∞ . 6/21

  9. Introduction Sobolev spaces We denote ∇ u = ( ∂ x 1 u , . . . , ∂ x n u ) , where ∂ x i u is the distributional partial derivate of u with respect to x i . Definition The first-order Sobolev spaces are defined as � � W 1 Z ( I n ) := u ∈ L 1 loc ( I n ) : u ∈ Z ( I n ) and |∇ u | ∈ Z ( I n ) , with the norm � u � W 1 Z ( I n ) = � u � Z ( I n ) + �|∇ u |� Z ( I n ) . By W 1 c ( I n ) in W 1 Z ( I n ) . 0 Z ( I n ) we denote the closure of C ∞ 7/21

  10. Introduction Classical Sobolev embedding theorem W 1 → L pn / ( n − p ) ( I n ) , 0 L p ( I n ) ֒ 1 ≤ p < n . Sobolev, case p > 1 . His proof did not apply to p = 1. Gagliardo; Nirenberg, p = 1 . Fournier embedding theorem → L n ′ ( I n ) . → L n ′ , 1 ( I n ) . W 1 0 L 1 ( I n ) ֒ → R ( L 1 , L ∞ ) ֒ R ( L 1 , L ∞ ) ֒ → L n ′ , 1 ( I n ) ֒ → L n ′ ( I n ) . W 1 0 L 1 ( I n ) ֒ 8/21

  11. Sobolev embeddings in rearrangement-invariant Banach spaces Sobolev embeddings in r.i. spaces Kerman and Pick studied the Sobolev embeddings among r.i. spaces. In particular, they solved the following problems: ∗ Given an r.i. range space X ( I n ), find the largest r.i. domain space, with a.c. norm, namely Z ( I n ) , satisfying W 1 0 Z ( I n ) ֒ → X ( I n ) . 0 � → X ( I n ) ⇒ � This means that if W 1 Z ( I n ) ֒ Z ( I n ) ֒ → Z ( I n ) . domain space Z ( I n ), describe the smallest r.i. ∗ Given an r.i. range space, namely X ( I n ) , that verifies W 1 0 Z ( I n ) ֒ → X ( I n ) . → � → � That is, if W 1 0 Z ( I n ) ֒ X ( I n ) ⇒ X ( I n ) ֒ X ( I n ) . 9/21

  12. Sobolev embeddings in rearrangement-invariant Banach spaces Examples Classical Sobolev embedding theorem W 1 0 L p ( I n ) ֒ → L pn / ( n − p ) ( I n ) , 1 ≤ p < n . Hunt; O’Neil; Peetre. W 1 0 L p ( I n ) ֒ → L pn / ( n − p ) , p ( I n ) . Kerman and Pick Kerman and Pick Optimal r.i. domain space: L p ( I n ) . Optimal r.i. range space: L pn / ( n − p ) , p ( I n ) . 10/21

  13. Sobolev embeddings in rearrangement-invariant Banach spaces Examples Critical Sobolev embedding theorem W 1 0 L n ( I n ) ֒ → L p ( I n ) , 1 ≤ p < ∞ . Maz’ya; Hansson; Br´ ezis and Wainger W 1 0 L n ( I n ) ֒ → L ∞ , n ; − 1 ( I n ) . Kerman and Pick Hansson; Kerman and Pick Optimal r.i. domain space: Z L ∞ , n ; − 1 ( I n ) . Optimal r.i. range space: L ∞ , n ; − 1 ( I n ) . 11/21

  14. Sobolev embeddings in mixed norm spaces Motivation Classical Sobolev embeddings Kerman and Pick Gagliardo; Nirenberg W 1 0 L 1 ( I n ) ֒ → R ( L 1 , L ∞ ) . Optimal domain and range of W 1 0 Z ( I n ) ֒ → Y ( I n ) , within the class of r.i. spaces. Describe the largest domain space and the smallest range with mixed norm in W 1 0 Z ( I n ) ֒ → R ( X , L ∞ ) . 12/21

  15. Sobolev embeddings in mixed norm spaces Problem Let X ( I n − 1 ) be an r.i. space and let Z ( I n ) be an r.i space, with a.c. norm. Our aim is to study the Sobolev embedding W 1 0 Z ( I n ) ֒ → R ( X , L ∞ ) . (1) We are interested in the following questions: Given a mixed norm space R ( X , L ∞ ), we want to find the largest r.i. domain space, with a.c. norm, satisfying (1). Let Z ( I n ) be an r.i. domain space, with a.c. norm. We would like to find the smallest range space of the form R ( X , L ∞ ) for which (1) holds. 13/21

  16. Sobolev embeddings in mixed norm spaces Examples Classical Sobolev embedding theorem W 1 0 L p ( I n ) ֒ → L pn / ( n − p ) ( I n ) , 1 ≤ p < n . W 1 0 L p ( I n ) ֒ → R ( L p ( n − 1) / ( n − p ) , p , L ∞ ) . R ( L p ( n − 1) / ( n − p ) , p , L ∞ ) optimal L p ( I n ) optimal r.i. domain space. range of the form R ( X , L ∞ ) . 14/21

  17. Sobolev embeddings in mixed norm spaces Examples Critical Sobolev embedding theorem W 1 0 L n ( I n ) ֒ → L p ( I n ) , 1 ≤ p < ∞ . W 1 0 L n ( I n ) ֒ → R ( L ∞ , n ; − 1 , L ∞ ) . R ( L ∞ , n ; − 1 , L ∞ ) optimal Z L ∞ , n ; − 1 ( I n ) optimal r.i. domain space. range of the form R ( X , L ∞ ) . 15/21

  18. Sobolev embeddings in mixed norm spaces Domain space: L p ( I n ) , 1 ≤ p < n Classical Sobolev embedding theorem W 1 0 L p ( I n ) ֒ → L pn / ( n − p ) ( I n ) , 1 ≤ p < n . R ( L p ( n − 1) / ( n − p ) , p , L ∞ ) optimal Kerman and Pick L pn / ( n − p ) , p ( I n ) optimal r.i. range space. range of the form R ( X , L ∞ ) . W 1 → R ( L p ( n − 1) / ( n − p ) , p , L ∞ ) ֒ � = L pn / ( n − p ) ( I n ) . 0 L p ( I n ) ֒ → 16/21

  19. Sobolev embeddings in mixed norm spaces Domain space: L n ( I n ) Critical Sobolev embedding theorem W 1 0 L n ( I n ) ֒ → L p ( I n ) , 1 ≤ p < ∞ . R ( L ∞ , n ; − 1 , L ∞ ) optimal Kerman and Pick L ∞ , n ; − 1 ( I n ) optimal r.i. range space. range of the form R ( X , L ∞ ) . W 1 0 L n ( I n ) ֒ → R ( L ∞ , n ; − 1 , L ∞ ) ֒ � = L ∞ , n ; − 1 ( I n ) . → 17/21

  20. Sobolev embeddings in mixed norm spaces Domain space: Z ( I n ) Z ( I n ) r.i. domain space. R ( Y op , L ∞ ) optimal range X op ( I n ) optimal r.i. range space for of the form R ( X , L ∞ ) for W 1 0 Z ( I n ) ֒ → X op ( I n ) . W 1 0 Z ( I n ) ֒ → R ( Y op , L ∞ ) . W 1 → R ( Y op , L ∞ ) ֒ → X op ( I n ) . 0 Z ( I n ) ֒ 18/21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend