a nonsmooth chow rashevski s theorem
play

A nonsmooth Chow-Rashevskis theorem Ermal Feleqi University of - PowerPoint PPT Presentation

A nonsmooth Chow-Rashevskis theorem Ermal Feleqi University of Vlora, Albania Optimization, State Constraints and Geometric Control Padova, May 25, 2018 Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May


  1. A nonsmooth Chow-Rashevski’s theorem Ermal Feleqi University of Vlora, Albania Optimization, State Constraints and Geometric Control Padova, May 25, 2018 Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 1 / 18

  2. References F. Rampazzo & H. Sussmann, Set-valued di ff erentials and a 1. nonsmooth version of Chow-Rashevski’s theorem , Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, December 2001. F. Rampazzo and H. Sussmann, Commutators of flow maps of 2. nonsmooth vector fields , J. Di ff erential Equations 2007 Sketch of results in E. Feleqi & F. Rampazzo, Integral representations for 1. bracket-generating multi-flows , Discrete Contin. Dyn. Syst. Ser. A., 2015. E. Feleqi & F. Rampazzo, Iterated Lie brackets for nonsmooth 2. vector fields , NoDEA - Nonlinear Di ff erential Equations Appl., 2017. E. Feleqi & F. Rampazzo, An L ∞ -Chow-Rashevski’s Theorem , work 3. in progress. Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 2 / 18

  3. Controllability Given X = ( X 1 , . . . , X p ) vector fields . on some open set Ω ⊂ R n . X − trajectory : = concatenation of a finite no. of integral curves of X 1 , . . . , X p , − X 1 , . . . , − X p . Definition X controllable in Ω if ∀ x , y ∈ Ω ∃X − trajectory ξ : [ t 1 , t 2 ] → Ω s.t. ξ ( t 1 ) = x , ξ ( t 2 ) = y . Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 3 / 18

  4. Lie bracket Definition Given two vector fields X , Y [ X , Y ] = XY − YX ≡ DY · X − DX · Y . Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 4 / 18

  5. Lie bracket Definition Given two vector fields X , Y [ X , Y ] = XY − YX ≡ DY · X − DX · Y . Main fact needed here e − tY ◦ e − tX ◦ e tY ◦ e tX ( x ) = x + t 2 [ X , Y ]( x ∗ ) + o ( t 2 ) as ( t , x ) → (0 , x ∗ ). Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 4 / 18

  6. Iterated Lie brackets Iterated brackets of a family X 1 , . . . , X p of vector fields: degree 1 X 1 , . . . , X p Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 5 / 18

  7. Iterated Lie brackets Iterated brackets of a family X 1 , . . . , X p of vector fields: degree 1 X 1 , . . . , X p degree 2 ( L ie Bracket or Commutator ) [ X i , X j ] : = X i X j − X j X i ≡ ∇ X j X i − ∇ X i X j Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 5 / 18

  8. Iterated Lie brackets Iterated brackets of a family X 1 , . . . , X p of vector fields: degree 1 X 1 , . . . , X p degree 2 ( L ie Bracket or Commutator ) [ X i , X j ] : = X i X j − X j X i ≡ ∇ X j X i − ∇ X i X j degree 3 � � [ X i , X j ] , X k Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 5 / 18

  9. Iterated Lie brackets Iterated brackets of a family X 1 , . . . , X p of vector fields: degree 1 X 1 , . . . , X p degree 2 ( L ie Bracket or Commutator ) [ X i , X j ] : = X i X j − X j X i ≡ ∇ X j X i − ∇ X i X j degree 3 � � [ X i , X j ] , X k degree 4 [[[ X i , X j ] , X k ] , X ℓ ] . . . [[ X i , X j ] , [ X k , X ℓ ]] Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 5 / 18

  10. Iterated Lie brackets Iterated brackets of a family X 1 , . . . , X p of vector fields: degree 1 X 1 , . . . , X p degree 2 ( L ie Bracket or Commutator ) [ X i , X j ] : = X i X j − X j X i ≡ ∇ X j X i − ∇ X i X j degree 3 � � [ X i , X j ] , X k degree 4 [[[ X i , X j ] , X k ] , X ℓ ] . . . [[ X i , X j ] , [ X k , X ℓ ]] et cetera.... Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 5 / 18

  11. LARC, Chow-Rashevski’s theorem and other deep results Theorem Assume X 1 , . . . , X p satisfy L ie A lgebra R ank C ondition or H örmander’s C ondition or, that is, � � = R n . span iterated Lie brackets at x (LARC) Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 6 / 18

  12. LARC, Chow-Rashevski’s theorem and other deep results Theorem Assume X 1 , . . . , X p satisfy L ie A lgebra R ank C ondition or H örmander’s C ondition or, that is, � � = R n . span iterated Lie brackets at x (LARC) Then (Chow-Rashevski) Any two points can be connected by an 1 . X -trajectory: Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 6 / 18

  13. LARC, Chow-Rashevski’s theorem and other deep results Theorem Assume X 1 , . . . , X p satisfy L ie A lgebra R ank C ondition or H örmander’s C ondition or, that is, � � = R n . span iterated Lie brackets at x (LARC) Then (Chow-Rashevski) Any two points can be connected by an 1 . X -trajectory: T ( y , x ) ≤ C | y − x | 1 / k Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 6 / 18

  14. LARC, Chow-Rashevski’s theorem and other deep results Theorem Assume X 1 , . . . , X p satisfy L ie A lgebra R ank C ondition or H örmander’s C ondition or, that is, � � = R n . span iterated Lie brackets at x (LARC) Then (Chow-Rashevski) Any two points can be connected by an 1 . X -trajectory: T ( y , x ) ≤ C | y − x | 1 / k (Hörmander) 2 . p � X 2 L = is hypoelliptic j j = 1 (Bony) L satisfies the strong maximum principle. 3 . Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 6 / 18

  15. A set-valued-bracket (Franco and Hector) If X 1 , X 2 are C 0 , 1 ,we set � � [ X 1 , X 2 ] set ( x ) : = co v = lim j →∞ [ X 1 , X 2 ]( x j ) , where 1. x j ∈ D i ff ( X 1 ) ∩ D i ff ( X 2 ) for all j , 2. lim j →∞ x j = x Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 7 / 18

  16. A set-valued-bracket (Franco and Hector) If X 1 , X 2 are C 0 , 1 ,we set � � [ X 1 , X 2 ] set ( x ) : = co v = lim j →∞ [ X 1 , X 2 ]( x j ) , where 1. x j ∈ D i ff ( X 1 ) ∩ D i ff ( X 2 ) for all j , 2. lim j →∞ x j = x Properties: x �→ [ X 1 , X 2 ] set ( x ) u. s.c., comp. convex valued; robust Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 7 / 18

  17. A set-valued-bracket (Franco and Hector) If X 1 , X 2 are C 0 , 1 ,we set � � [ X 1 , X 2 ] set ( x ) : = co v = lim j →∞ [ X 1 , X 2 ]( x j ) , where 1. x j ∈ D i ff ( X 1 ) ∩ D i ff ( X 2 ) for all j , 2. lim j →∞ x j = x Properties: x �→ [ X 1 , X 2 ] set ( x ) u. s.c., comp. convex valued; robust Applications commutativity, simultaneous rectification, asymptotic formulas, Chow-Rashevski type theorem. (H. Sussmann, F. Rampazzo, 2001, 2007). Frobenius type thm (F. Rampazzo 2007). Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 7 / 18

  18. A set-valued-bracket (Franco and Hector) If X 1 , X 2 are C 0 , 1 ,we set � � [ X 1 , X 2 ] set ( x ) : = co v = lim j →∞ [ X 1 , X 2 ]( x j ) , where 1. x j ∈ D i ff ( X 1 ) ∩ D i ff ( X 2 ) for all j , 2. lim j →∞ x j = x Properties: x �→ [ X 1 , X 2 ] set ( x ) u. s.c., comp. convex valued; robust Applications commutativity, simultaneous rectification, asymptotic formulas, Chow-Rashevski type theorem. (H. Sussmann, F. Rampazzo, 2001, 2007). Frobenius type thm (F. Rampazzo 2007). Asymptotic formula: As | t | + | x − x ∗ | → 0, e − tX 2 ◦ e − tX 1 ◦ e tX 2 ◦ e tX 1 ( x ) − x ∈ t 2 [ X 1 , X 2 ]( x ∗ ) + t 2 o (1) Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 7 / 18

  19. Higher-order set-valued brackets If X 1 , X 2 are C 1 , 1 and X 3 is C 0 , 1 , we set [[ X 1 , X 2 ] , X 3 ] set ( x ) � � : = co v = lim j →∞ DX 3 ( y j ) · [ X 1 , X 2 ]( x j ) − D [ X 1 , X 2 ]( x j ) · X 3 ( y j ) , where 1. x j ∈ D i ff ( DX 1 ) ∩ D i ff ( DX 2 ) ∀ j , y j ∈ D i ff ( X 3 ) ∀ j , 2. lim j →∞ ( x j , y j ) = ( x , x ). Properties: Chart-invariant, robust, u.s.c. with comp, conv values Asymptotic formula: As | t | + | x − x ∗ | → 0 e − tX 3 ◦ e − tX 1 ◦ e − tX 2 ◦ e tX 1 ◦ e tX 2 ◦ e tX 3 ◦ e − tX 2 ◦ e − tX 1 ◦ e tX 2 ◦ e tX 1 ( x ) − x � ������������������������� �� ������������������������� � � ������������������������� �� ������������������������� � Ψ − 1 Ψ ∈ t 3 � X 1 , [ X 2 , X 3 ] � ( x ∗ ) + t 3 o (1) . Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 8 / 18

  20. Theorem (A generalization of Chow-Rashevski’s theorem) Assume ∃ iterated brackets B 1 , . . . , B r , possibly set-valued, of the vector fields X 1 , . . . , X p s.t. at x ∗ � � = R n span v 1 , . . . , v r ∀ v 1 ∈ B 1 , . . . v r ∈ B r . (GHC) Ermal Feleqi (University of Vlora, Albania) A Chow-Rashvski type theorem Padova, May 25, 2018 9 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend