a new estimator for quantile oriented sensitivity indices
play

A new estimator for quantile-oriented sensitivity indices Thomas - PowerPoint PPT Presentation

A new estimator for quantile-oriented sensitivity indices Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) EDF R&D-MRI Chatou - Universit Paris


  1. A new estimator for quantile-oriented sensitivity indices Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) EDF R&D-MRI Chatou - Université Paris 5 April 19th, 2016, Les Houches 1 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  2. Sensitivity Analysis - Introduction Numerical code g . Random inputs ( X 1 , . . . , X d ) ∼ ( f 1 , . . . , f d ) iid . Random output Y ∈ R such that Y = g ( X 1 , . . . , X d ) . Main goal : for i ∈ { 1 , . . . , d } , how does Xi ’s uncertainty propagate through g ? 2 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  3. Sensitivity analysis - Schema 3 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  4. Sensitivity analysis Several potential uses : − → Better understanding of the model, − → Neglect X i ’s distribution if not influential, − → Feedback on the inputs - reducing X i ’s distribution if too much influential. Global analysis : most relevant way ? 4 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  5. Goal-oriented sensitivity analysis In practice, Y ’s distribution does not need to be fully known. Choice of a probability feature θ ( Y ) (mean, quantiles etc . . . ) which may be relevant. Goal-oriented sensitivity analysis ( GOSA ) [N. Rachdi, 2011] : − → For i ∈ { 1 , . . . , d } , quantification of X i ’s influence over θ ( Y ) . 5 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  6. GOSA One by one strategy : condition the code g by X i and compute θ ( Y | X i ) Set x i realization of X i − → g ( X 1 , . . . , x i , . . . , X d ) − → θ ( Y | X i = x i ) , Condition g by all the possible values x i , regarding f i : − → θ ( Y | X i ) ’s distribution, random variable function of X i . 6 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  7. GOSA - Schema Respective influences of each input over θ (Y) Random Conditional simulation θ (YlXi) pdf’s inputs model : f(XlXi) θ (YlX1) X1 Runs of f(X l X1) θ (YlX2) X2 Runs of f(X l X2) Runs of f(X l X3) X3 θ (YlX3) 7 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  8. Contrast functions Use contrast functions to quantify θ ( Y | X i ) ’s variability. Simple contrasts : ∀ ( y , θ ) ∈ R 2 ϕ ( y , θ ) ≥ 0 quantify a "distance" between two real components. Mean contrasts : for Y r.r.v. φ Y ( θ ) = E Y [ ϕ ( Y , θ )] . Y ’s feature : θ ( Y ) := arg min θ ∈ R φ Y ( θ ) . 8 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  9. Contrast functions : mean and quantiles If ϕ ( y , θ ) = m ( y , θ ) = | y − θ | 2 : therefore φ Y ( θ ) = E Y [ | Y − θ | 2 ] , − → θ ( Y ) = E [ Y ] . If, for α ∈ ] 0 ; 1 [ , ϕ ( y , θ ) = c α ( y , θ ) = ( y − θ )( α − 1 y ≤ θ ) : therefore φ Y ( θ ) = E Y [( Y − θ )( α − 1 Y ≤ θ )] , → θ ( Y ) = q α ( Y ) , α -quantile de Y . − We focus on ϕ = c α : θ ( Y ) = q α ( Y ) . N.B. : φ ( θ | X i = x i ) = E [ c α ( Y , q α ( Y | X i )) | X i = x i ] . min θ 9 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  10. Sensitivity analysis with respect to a contrast Need to quantify the variability of θ ( Y | X i ) . Sensitivity indices based on contrasts [Fort et al., 2013] � � S Xi ϕ ( Y ) = min θ ∈ R φ Y ( θ ) − E min θ ∈ R φ Y ( θ | X i ) . − → quantifies the influence of the input X i on θ ( Y ) . S Xi ϕ ( Y ) ≥ 0. We divide S Xi θ ∈ R φ Y ( θ ) so that 0 ≤ S Xi ϕ ( Y ) by min ϕ ( Y ) ≤ 1 . S i c α ( Y ) = 0 ⇔ θ ( Y | X i ) = θ ( Y ) a . s . S i c α ( Y ) = 1 ⇔ ( Y | X i = x i ) = constant ( x i ) a . s . 10 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  11. Sensitivity analysis with respect to a contrast Y = X 1 + X 2 with X 1 ∼ Exp ( 1 ) and X 2 ∼ − Exp ( 1 ) 0.8 independent. S X 1 m = S X 2 0.6 m = 0 . 5 (Sobol indices). Both inputs are influential on the s1 0.4 mean E [ Y ] ! S X 1 c α : X 1 ’s influence on Y ’s 0.2 α -quantile. S X 2 0.0 0.2 0.4 0.6 0.8 1.0 c α : X 2 ’s influence on Y ’s alpha α -quantile. Sensitivity changes regarding the level of quantile α . 11 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  12. Estimation of the quantile-oriented index Goal : from a n -sample ( X 1 i , Y 1 ) , . . . , ( X n i , Y n ) , estimation of � � S Xi c α ( Y ) = min φ Y ( θ ) − E θ ∈ R φ Y ( θ | X i ) . min θ � � = E [ c α ( Y , q α ( Y ))] − E X i min θ ∈ R E [ c α ( Y , θ ) | X i ] . 1st term estimation : n n 1 c α ( Y j , θ ) = 1 � � � � Y j , ˆ q α ( Y ) min c α , n n θ j = 1 j = 1 where ˆ q α ( Y ) is the classical empirical quantile estimator − → this estimator converges a . s . 12 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  13. Estimation for the second term � � Second term : E X i min θ ∈ R E [ c α ( Y , θ ) | X i ] . Several issues : -Double expectation -Conditional expectation -Minimization problem. We use the following asymptotic result [Fan et al., 1994], for x i any possible realization of X i : n 1 � � � � � Y j , θ X j P i − x i − → E [ c α ( Y , θ ) | X i = x i ] , arg min c α K h ( n ) n →∞ arg min f i ( x i ) θ θ j = 1 where f i is the pdf of X i with a compact support, K a 2-order positive kernel and ( h ( n )) n ∈ N a bandwidth sequence such that h ( n ) → 0 while n × h ( n ) → ∞ . 13 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  14. Estimation for the second term We define the estimator as : n k V n = 1 1 1 � � � � ˆ � � Y j , θ X j i − X k k min c α K h ( k ) i n f i ( X k i ) θ k = 1 j = 1 Useful points : � � �� θ �→ � k Y j , θ X j i − X k � � -As j = 1 c α K h ( k ) is a piecewise linear i function whose “angles” are the Y 1 , ..., Y k → its minimizer is among Y 1 , ..., Y k . − - ˆ V n is built recursively, ie if we know it, we also know V 1 , . . . , V n − 1 . We prove : � � ˆ P V n n →∞ E X i − → min E [ c α ( Y , θ ) | X i ] . θ 14 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  15. Numerical experiments Influences of the inputs over the output quantiles Defect detection : wave control 1.0 Inputs through a structure to study. X1 X2 0.8 X3 Sensitivity analysis over the random 0.6 defect a 90 , function of the inputs X , S X which we detect with a probability of 0.4 90 % . 0.2 Influence of the inputs over 0.0 q 0 . 25 ( a 90 ) . 0 100 200 300 400 500 size of sample 3 random inputs : - X 1 : the thickness of the structure - X 2 : the angle of the control - X 3 : the depth of the defect. 15 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

  16. Conclusions Relevant information for the sensitivity analysis - useful alternative to Sobol indices ! Estimator not so expensive to compute regarding classical estimators in SA . Convergence criterion for ˆ V n ? Perspective : extension to SA over random cumulative distribution functions (ouch !) 16 / 21 Thomas Browne Supervisors : J-C. Fort (Paris 5) & T. Klein (IMT-Toulouse) Advisors : B. Iooss & L. Le Gratiet (EDF R&D-MRI Chatou) A new estimator for quantile-oriented sensitivity indices

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend