a multiscale approach to the smart deployment of micro
play

A multiscale approach to the smart deployment of micro-sensors over - PowerPoint PPT Presentation

C entre for C omputational S tructural and M aterials M echanics A multiscale approach to the smart deployment of micro-sensors over flexible plates Giovanni Capellari, Francesco Caimmi, Matteo Bruggi, Stefano Mariani Politecnico di Milano


  1. C entre for C omputational S tructural and M aterials M echanics A multiscale approach to the smart deployment of micro-sensors over flexible plates Giovanni Capellari, Francesco Caimmi, Matteo Bruggi, Stefano Mariani Politecnico di Milano

  2. Damage (delamination) in composite structures 2 Syntactic foam/glass fibre composite sandwich delamination DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  3. Effects of embedded monitoring systems 3 inner (embedded) piezo effects of embedded fiber sensors after Kousourakis et al., Composites (2008) SHM modifies the stress-carrying capacity of the structural component surface mounted piezo after Tang et al., JIM (2011) DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  4. Surface-mounted MEMS-based sensing 4 MEMS evaluation board Features of 3-axis, digital output MEMS (micro electro-mechanical sensor) accelerometer LIS3LV02DQ (STM): full scale Β±2𝑕 β€’ β€’ bandwidth 640 Hz sensitivity 1,000 LSb(Least_Significant_bit)/ 𝑕 β€’ resolution 1 m 𝑕 β€’ β€’ weight 0.2 grams DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  5. 5 Validation of the SHM scheme Optimal sensor placement DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  6. Validation test: DCB test under cyclic loading 6 Sinusoidally varying imposed displacement u (at increasing ) DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  7. Validation test: test results and MEMS output 7 Load P varies smoothly MEMS output shows high-order frequency fluctuation DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  8. Validation test: theoretical model 8 (Bernoulli-Euler beam bending) Specimen compliance: a : delamination length Acceleration-load relation: : assumed constant (geometry dependent) In case of sinusoidal load: Moving to the frequency domain, through FFT: At the driving frequency: DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  9. Validation test: theoretical model 9 (Bernoulli-Euler beam bending) 𝛿 = | βˆ†π‘£ = πœ’ 𝑣| 2𝐷 Ξ΄ 𝑔 βˆ’ 𝑔 𝑣 = 𝜈 𝑏 3 Ξ΄ 𝑔 βˆ’ 𝑔 𝑣 We obtained a delamination length-sensing SHM system (Mariani et al., MEJ 2013, IEEE Sensors 2014) DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  10. 10 Validation of the SHM scheme Optimal sensor placement DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  11. Optimal sensor placement 11 DCB test examples of localized damaged regions Thin square, simply supported plate: Isotropic material: (dimensionless) Young modulus E =10.92 Poisson ratio n =0.3 DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  12. Optimization approach (coupling FEA and MMA) 12 undamaged plate solution damaged plate solution In case of a single damaged region (of known position), to maximize the sensitivity to the effects of damage: penalization term to approach number of possible pure 0-1 distributions (p>1) sensor locations (FE) β€œsensor density” max allowed at the i-th position number of sensors (Mariani-Bruggi et al., EO, JIM 2013) DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  13. Optimization approach (coupling FEA and MMA) 13 number of damaged areas In case of a multiple damaged regions (of known positions), to maximize the sensitivity to the magnitude of the effects of damage [FORM-1]: or, to maximize the sensitivity to damage [FORM-2]: To be adopted at each length-scale (two concatenated analyses in the cases to follow) DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  14. Square plate: optimal sensor placement – 14 damage anywhere at the macroscale simply supported plate [FORM-1] [FORM-2] DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  15. Rectangular plate: optimal sensor placement – 15 damage anywhere at the macroscale simply supported plate [FORM-1] [FORM-2] DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  16. Square plate: optimal sensor placement – 16 damage anywhere at the macroscale simply supported plate damaged area [FORM-1] [FORM-2] DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  17. Square plate: optimal sensor placement – 17 damage anywhere at the macroscale clamped plate [FORM-1] [FORM-2] DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  18. Square plate: optimal sensor placement – 18 damage anywhere clamped plate, distributed load [FORM-2], Multi-scale analysis: L =1 m (side length, or structural size) s =5 cm (element, or damaged area size) l =2.5 mm (sensor size) sensor macro-placement objective function sensor micro-placement DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  19. Square plate: optimal sensor placement – 19 damage anywhere clamped plate, concentrated load [FORM-2], Multi-scale analysis: L =1 m (side length, or structural size) s =5 cm (element, or damaged area size) l =2.5 mm (sensor size) sensor macro-placement objective function sensor micro-placement DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  20. Conclusions 20 β€’ We proposed a MEMS-based SHM system, sensitive to damage (delamination) extent in composite β€’ We proposed a multi-scale topology optimization-like procedure to deploy MEMS, so as to maximize sensitivity to damage Ongoing activities and future work β€’ robustness of the SHM system β€’ networking of (possibly self-powered) MEMS sensors β€’ real-time damage detection and identification for flexible (composite) plates β€’ Application: engineered bike and ski helmets, to understand links between impacts and brain injuries Acknowledgments β€’ Italian MIUR-PRIN project Mechanics of microstructured materials: multi-scale identification, optimization and active control β€’ Italian Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM) β€’ Regione Lombardia and CILEA Consortium, grant M 2 -MEMS β€’ Fondazione Cariplo, project Safer Helmets DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend