a finite field example over f p geometric pictures don t
play

A Finite Field Example Over F p geometric pictures dont make sense. - PowerPoint PPT Presentation

E LLIPTIC CURVES C RYPTOGRAPHY F RANCESCO P APPALARDI #3 - T HIRD L ECTURE . J UNE 18 TH 2019 WAMS S CHOOL : O I NTRODUCTORY TOPICS IN N UMBER T HEORY AND D IFFERENTIAL G EOMETRY King Khalid University Abha, Saudi Arabia A Finite Field Example


  1. E LLIPTIC CURVES C RYPTOGRAPHY F RANCESCO P APPALARDI #3 - T HIRD L ECTURE . J UNE 18 TH 2019 WAMS S CHOOL : O I NTRODUCTORY TOPICS IN N UMBER T HEORY AND D IFFERENTIAL G EOMETRY King Khalid University Abha, Saudi Arabia

  2. A Finite Field Example Over F p geometric pictures don’t make sense. Example Let E : y 2 = x 3 − 5 x + 8 / F 37 , P = (6 , 3) , Q = (9 , 10) ∈ E ( F 37 ) r P , Q : y = 27 x +26 r P , P : y = 11 x +11 y 2 = x 3 − 5 x + 8 � r P , Q ∩ E ( F 37 ) = = { (6 , 3) , (9 , 10) , (11 , 27) } y = 27 x + 26 y 2 = x 3 − 5 x + 8 � r P , P ∩ E ( F 37 ) = = { (6 , 3) , (6 , 3) , (35 , 26) } y = 11 x + 11 P + E Q = (11 , 10) 2 P = (35 , 11) 3 P = (34 , 25) , 4 P = (8 , 6) , 5 P = (16 , 19) , . . . 3 P + 4 Q = (31 , 28) , . . . Exercise • Compute the order and the Group Structure of E ( F 37 )

  3. EXAMPLE: Elliptic curves over F 5 ∀ E / F 5 (12 elliptic curves), # E ( F 5 ) ∈ { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . ∀ n , 2 ≤ n ≤ 10 ∃ ! E / F 5 : # E ( F 5 ) = n with the exceptions: Example (Elliptic curves over F 5 ) • E 1 : y 2 = x 3 + 1 and E 2 : y 2 = x 3 + 2 both order 6 and E 1 ( F 5 ) ∼ = E 2 ( F 5 ) ∼ = C 6 • E 3 : y 2 = x 3 + x and E 4 : y 2 = x 3 + x + 2 order 4 E 3 ( F 5 ) ∼ E 4 ( F 5 ) ∼ = C 2 ⊕ C 2 = C 4 • E 5 : y 2 = x 3 + 4 x and E 6 : y 2 = x 3 + 4 x + 1 both order 8 E 5 ( F 5 ) ∼ E 6 ( F 5 ) ∼ = C 2 ⊕ C 4 = C 8 • E 7 : y 2 = x 3 + x + 1 order 9 and E 7 ( F 5 ) ∼ = C 9

  4. Determining points of order 2 Definition 2–torsion points E [2] = { P ∈ E ( F p ) : 2 P = ∞} . FACTS:  C 2 ⊕ C 2 if p > 2   E [2] ∼ if p = 2 , E : y 2 + xy = x 3 + a 4 x + a 6 = C 2 if p = 2 , E : y 2 + a 3 y = x 3 + a 2 x 2 + a 6  {∞}  Each curve / F 2 has cyclic E ( F 2 ) . E E ( F 2 ) | E ( F 2 ) | y 2 + xy = x 3 + x 2 + 1 {∞ , (0 , 1) } 2 y 2 + xy = x 3 + 1 {∞ , (0 , 1) , (1 , 0) , (1 , 1) } 4 y 2 + y = x 3 + x {∞ , (0 , 0) , (0 , 1) , (1 , 0) , (1 , 1) } 5 y 2 + y = x 3 + x + 1 {∞} 1 y 2 + y = x 3 {∞ , (0 , 0) , (0 , 1) } 3

  5. Determining points of order 3 FACTS (from yesterday): 1 ψ 3 ( x ) := 3 x 4 + 6 Ax 2 + 12 Bx − A 2 called the 3 rd division polynomial 2 ( x 1 , y 1 ) ∈ E ( F p ) has order 3 ⇒ ψ 3 ( x 1 ) = 0 3 E ( F p ) has at most 8 points of order 3 4 If p � = 3, E [3] := { P ∈ E ( F p ) : 3 P = ∞} ∼ = C 3 ⊕ C 3 5 If p = 3, E : y 2 = x 3 + Ax 2 + Bx + C and P = ( x 1 , y 1 ) has order 3, then 1 + AC − B 2 = 0 • Ax 3 • E [3] ∼ = C 3 if A � = 0 and E [3] = {∞} otherwise

  6. Determining points of order 3 (continues) FACTS:  C 3 ⊕ C 3 if p � = 3   E [3] ∼ if p = 3 , E : y 2 = x 3 + Ax 2 + Bx + C , A � = 0 = C 3 if p = 3 , E : y 2 = x 3 + Bx + C  {∞}  Example: inequivalent curves / F 7 with # E ( F 7 ) = 9 . E ( F 7 ) ∼ E ψ 3 ( x ) E [3] ∩ E ( F 7 ) = y 2 = x 3 + 2 x ( x + 1)( x + 2)( x + 4) {∞ , (0 , ± 3) , ( − 1 , ± 1) , (5 , ± 1) , (3 , ± 1) } C 3 ⊕ C 3 y 2 = x 3 + 3 x + 2 ( x + 2)( x 3 + 5 x 2 + 3 x + 2) {∞ , (5 , ± 3) } C 9 y 2 = x 3 + 5 x + 2 ( x + 4)( x 3 + 3 x 2 + 5 x + 2) {∞ , (3 , ± 3) } C 9 y 2 = x 3 + 6 x + 2 ( x + 1)( x 3 + 6 x 2 + 6 x + 2) {∞ , (6 , ± 3) } C 9

  7. One count the number of inequivalent E / F p with # E ( F p ) = r Example (A curve over F 4 = F 2 ( ξ ) , ξ 2 = ξ + 1; E : y 2 + y = x 3 ) We know E ( F 2 ) = {∞ , (0 , 0) , (0 , 1) } ⊂ E ( F 4 ) . E ( F 4 ) = {∞ , (0 , 0) , (0 , 1) , (1 , ξ ) , (1 , ξ + 1) , ( ξ, ξ ) , ( ξ, ξ + 1) , ( ξ + 1 , ξ ) , ( ξ + 1 , ξ + 1) } ψ 3 ( x ) = x 4 + x = x ( x + 1)( x + ξ )( x + ξ + 1) ⇒ E ( F 4 ) ∼ = C 3 ⊕ C 3

  8. Determining points of order (dividing) m Definition ( m –torsion point) Let E / K and let K an algebraic closure of K . E [ m ] = { P ∈ E ( K ) : mP = ∞} Theorem (Structure of Torsion Points) Let E / K and m ∈ N . If p = char( K ) ∤ m, E [ m ] ∼ = C m ⊕ C m If m = p r m ′ , p ∤ m ′ , E [ m ] ∼ E [ m ] ∼ = C m ⊕ C m ′ or = C m ′ ⊕ C m ′ if E [ p ] ∼ � ordinary = C p E / F p is called supersingular if E [ p ] = {∞}

  9. Group Structure of E ( F p ) Corollary Let E / F p . ∃ n , k ∈ N are such that E ( F p ) ∼ = C n ⊕ C nk Proof. From classification Theorem of finite abelian group E ( F p ) ∼ = C n 1 ⊕ C n 2 ⊕ · · · ⊕ C n r with n i | n i +1 for i ≥ 1. Hence E ( F p ) contains n r 1 points of order dividing n 1 . From Structure of Torsion Theorem , # E [ n 1 ] ≤ n 2 1 . So r ≤ 2 Theorem Let E / F p and n , k ∈ N s.t. E ( F p ) ∼ = C n ⊕ C nk . Then n | p − 1 .

  10. The division polynomials Definition (Division Polynomials of E : y 2 = x 3 + Ax + B ( p > 3 )) ψ 0 =0 , ψ 1 = 1 , ψ 2 = 2 y , ψ 3 = 3 x 4 + 6 Ax 2 + 12 Bx − A 2 ψ 4 =4 y ( x 6 + 5 Ax 4 + 20 Bx 3 − 5 A 2 x 2 − 4 ABx − 8 B 2 − A 3 ) . . . ψ 2 m +1 = ψ m +2 ψ 3 m − ψ m − 1 ψ 3 for m ≥ 2 m +1 � ψ m � · ( ψ m +2 ψ 2 m − 1 − ψ m − 2 ψ 2 ψ 2 m = m +1 ) for m ≥ 3 2 y The polynomial ψ m ∈ Z [ x , y ] is called the m th division polynomial FACTS: y ( mx ( m 2 − 4) / 2 + · · · ) � if m is even • ψ 2 m +1 ∈ Z [ x ] ψ 2 m ∈ 2 y Z [ x ] ψ m = and mx ( m 2 − 1) / 2 + · · · if m is odd. m = m 2 x m 2 − 1 + · · · • ψ 2

  11. Remark. • E [2 m + 1] \ {∞} = { ( x , y ) ∈ E ( ¯ K ) : ψ 2 m +1 ( x ) = 0 } • E [2 m ] \ E [2] = { ( x , y ) ∈ E ( ¯ K ) : y − 1 ψ 2 m ( x ) = 0 } Example ψ 4 ( x ) =2 y ( x 6 + 5 Ax 4 + 20 Bx 3 − 5 A 2 x 2 − 4 BAx − A 3 − 8 B 2 ) ψ 5 ( x ) =5 x 12 + 62 Ax 10 + 380 Bx 9 − 105 A 2 x 8 + 240 BAx 7 + � − 300 A 3 − 240 B 2 � x 6 − 696 BA 2 x 5 + � − 125 A 4 − 1920 B 2 A � x 4 + � − 80 BA 3 − 1600 B 3 � x 3 + � − 50 A 5 − 240 B 2 A 2 � x 2 + � − 100 BA 4 − 640 B 3 A � x + � A 6 − 32 B 2 A 3 − 256 B 4 � ψ 6 ( x ) =2 y (6 x 16 + 144 Ax 14 + 1344 Bx 13 − 728 A 2 x 12 + � − 2576 A 3 − 5376 B 2 � x 10 − 9152 BA 2 x 9 + � − 1884 A 4 − 39744 B 2 A � x 8 + � 1536 BA 3 − 44544 B 3 � x 7 + � − 2576 A 5 − 5376 B 2 A 2 � x 6 + � − 6720 BA 4 − 32256 B 3 A � x 5 + � − 728 A 6 − 8064 B 2 A 3 − 10752 B 4 � x 4 + � − 3584 BA 5 − 25088 B 3 A 2 � x 3 + � 144 A 7 − 3072 B 2 A 4 − 27648 B 4 A � x 2 + � 192 BA 6 − 512 B 3 A 3 − 12288 B 5 � x + � 6 A 8 + 192 B 2 A 5 + 1024 B 4 A 2 � )

  12. Theorem ( E : Y 2 = X 3 + AX + B elliptic curve, P = ( x , y ) ∈ E ) x − ψ m − 1 ψ m +1 , ψ 2 m ( x , y ) � φ m ( x ) m ( x ) , ω m ( x , y ) � � � m ( x , y ) = = ψ 2 2 ψ 4 ψ 2 ψ 3 m ( x ) m ( x ) m ( x , y ) where ψ m +2 ψ 2 m − 1 − ψ m − 2 ψ 2 φ m = x ψ 2 m − ψ m +1 ψ m − 1 , ω m = m +1 4 y FACTS: • φ m ( x ) = x m 2 + · · · ψ m ( x ) 2 = m 2 x m 2 − 1 + · · · ∈ Z [ x ] • ω 2 m +1 ∈ y Z [ x ], ω 2 m ∈ Z [ x ] ω m ( x , y ) • m ( x , y ) ∈ y Z ( x ) ψ 3 • gcd( ψ 2 m ( x ) , φ m ( x )) = 1 • E [2 m + 1] \ {∞} = { ( x , y ) ∈ E ( K ) : ψ 2 m +1 ( x ) = 0 } • E [2 m ] \ E [2] = { ( x , y ) ∈ E ( K ) : y − 1 ψ 2 m ( x ) = 0 }

  13. Theorem (Hasse) Let E be an elliptic curve over the finite field F q . Then the order of E ( F q ) satisfies | q + 1 − # E ( F q ) | ≤ 2 √ q . So # E ( F q ) ∈ [( √ q − 1) 2 , ( √ q + 1) 2 ] the Hasse interval I q Example (Hasse Intervals) q I q { 1 , 2 , 3 , 4 , 5 } 2 3 { 1 , 2 , 3 , 4 , 5 , 6 , 7 } 4 { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } 5 { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } 7 { 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 } 8 { 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 } 9 { 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 } 11 { 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 } 13 { 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 } 16 { 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 25 } 17 { 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 } 19 { 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 } 23 { 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 } 25 { 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 } 27 { 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 } 29 { 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 } 31 { 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 } 32 { 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 }

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend