a continuum based macroscopic unified low and high cycle
play

A continuum based macroscopic unified low- and high cycle fatigue - PowerPoint PPT Presentation

A continuum based macroscopic unified low- and high cycle fatigue model Tero Frondelius 1 , 2 , Sami Holopainen 3 , Reijo Kouhia 3 , Niels Saabye Ottosen 4 , Matti Ristinmaa 4 , Joona Vaara 1 1 W artsil a Finland Oy, J arvikatu 2-4,


  1. A continuum based macroscopic unified low- and high cycle fatigue model Tero Frondelius 1 , 2 , Sami Holopainen 3 , Reijo Kouhia 3 , Niels Saabye Ottosen 4 , Matti Ristinmaa 4 , Joona Vaara 1 1 W¨ artsil¨ a Finland Oy, J¨ arvikatu 2-4, FI-65100 Vaasa, Finland 2 Oulu University, Materials and Mech. Eng., P. Kaiteran katu 1, FI-90014 Oulu, Finland 3 Tampere University, Structural Mechanics, P.O. Box 600, FI-33014 Tampere University 4 Lund University, Solid Mechanics, P.O. Box 117, SE-22100 Lund, Sweden ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture Bordeaux, France, June 24-26, 2019

  2. Introduction - fatigue models Problems in fatigue analyses: ◮ low-cycle- and high-cycle -fatigue regimes are treated separately, ◮ mostly based on well defined cycles, ◮ multiaxiality. A more fundamental approach for HCF based on evolution equations proposed by Ottosen, Stenstr¨ om and Ristinmaa in IJF 2008. https://doi.org/10.1016/j.ijfatigue.2007.08.009 In this study this idea is combined with a plasticity model to obtain a unified model.

  3. Evolution equation based HCF model Key ingredients are: B σ 1 Endurance surface β > 0 d s β ( σ , { α } ; parameters ) = 0 β < 0 evolution equations for the fatigue damage D d α α D = g ( β, D ) ˙ ˙ β and the internal variables { α } σ 2 σ 3 A α } = { G } ( σ , { α } ) ˙ { ˙ β

  4. Conditions for evolution σ 1 σ 1 d s β > 0 β > 0 d s ˙ ˙ β ≥ 0 β < 0 α ̸ = 0 ˙ α = 0 ˙ s s ˙ ˙ D ≥ 0 d α D = 0 α α σ 2 σ 3 σ 2 σ 3 (a) (b)

  5. Original formulation for HCF Endurance surface: 1 �� � 3 ¯ β = J 2 + AI 1 − σ − 1 = 0 σ − 1 where ¯ J 2 = 1 2 tr ( s − α ) 2 , I 1 = tr σ , A = σ − 1 /σ 0 − 1 and σ a σ − 1 = σ af ,R = − 1 A σ 0 = σ af ,R =0 σ − 1 σ m Evolution equations: α = C ( s − α ) ˙ D = K exp( Lβ ) ˙ ˙ ˙ β, β

  6. LCF-HCF approach Couples with the plasticity model, Chaboche type model adopted: σ 1 d s β > 0 � ˙ 3 β ≥ 0 f ( σ , X , R ) = 2 ( s − X ) : ( s − X ) − ( σ y + R ) = 0 α ̸ = 0 ˙ s ˙ D ≥ 0 d α λ ∂f � ε p = ˙ ε p : ˙ ε p 2 ε p ˙ ∂ σ , ˙ eff = 3 ˙ α X � ˙ ε p R = R i , R i = γR ∞ ,i (1 − R i /R ∞ ,i ) ˙ eff ε p − γ i ˙ � ε p X i = 2 ˙ X = X i , 3 X ∞ ,i ˙ eff X i σ 2 σ 3 (a)

  7. LCF-HCF approach - damage evolution d D d t = g ( β )d β d t + M d d t (exp( Qβ ) ε p eff ) where the high cycle part is modified to � � 1 + 1 − exp( − ˜ L ( β − b )) g ( β ) = K ≈ K exp Lβ when β � 1 a + exp( − ˜ L ( β − b )) Parameters M and Q from two standard cyclic tests with different amplitudes: d N ≈ M exp( Qβ )d ε p d D d N = 4 M exp( Qβ ) ε p eff a β ( N 1 ) − β ( N 2 ) ln N 2 ε p 1 1 a2 Q = , M = N 1 ε p 4 N i exp( Qβ ( N i )) ε p a1 a i

  8. LCF-parameters Using the Coffin-Manson and Ramberg-Osgood relations: ε p f (2 N ) − c , c ( ε p a ) n c a = ε ′ σ a = σ ′ log( ε a ) LCF HCF 1 − c � N 2 � ε ′ Q = β ( N 1 ) − β ( N 2 ) ln f N 1 1 M = σ ′ 4 N i exp( Qβ ( N i )) ε ′ f (2 N i ) − c f E 1 f ) − c (2 N i ) − cn c − σ − 1 � (1 + A ) σ ′ c ( ε ′ � β ( N i ) = ∆ ε p > ∆ ε e ∆ ε p < ∆ ε e σ − 1 log(2 N )

  9. bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc Preliminary results, S-N curve for AISI 4340 900 σ − 1 = 315 MPa , A = 0 . 225 , C = 1 . 2 , ˜ 800 K = 2 . 5 · 10 − 6 , L = 14 . 5 , a = 0 . 005 , b = 0 . 5 , M = 10 − 11 , Q = 16 . 700 σ a [MPa] σ y = 331 MPa , X ∞ , 1 = 35921 MPa , 600 bc bc X ∞ , 2 = 6972 MPa , X ∞ , 3 = 4222 MPa , 500 γ 1 = 651 , γ 2 = 53 . 3 , γ 3 = 5 . 7 , no isotr. hardening, 400 300 Chaboche model data from Y. Gorash, D. MacKenzie, Open Engineering , 7 , 126 (2017) 200 10 2 10 3 10 4 10 5 10 6 10 7 https://doi.org/10.1515/eng-2017-0019 N Present model fit with blue solid line. Dashed red line fit by Gorash, MacKenzie. Experimental results (black dots) from N.E. Dowling: Mean stress effects in stress-life and strain-life fatigue. SAE Technical Paper 1 (2004), 1-14.

  10. ut ut ut ut ut ut ut ut ut ut ut Two-level test 1 . 4 1 . 2 Two-level loading 735 → 810 MPa (blue), 810 → 735 MPa (red). 1 . 0 0 . 8 n 2 /N 2 Experimental data shown by triangles from W.H. Erickson, C.E. Work, A study of the accumulation of fatigue 0 . 6 damage in steel, 64th Annual Meeting of ASTM , 704-718 (1961). 0 . 4 0 . 2 Present model predictions by solid lines. 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 n 1 / ( n 1 + n 2 )

  11. Concluding remarks and future work ◮ Continuum based Unified LCF-HCF model. ◮ Multiaxial, applicable to arbitrary loading history. ◮ Applicable for post-processing. ◮ Can be easily extended to include anisotropic, gradient and stochastic effects. ◮ Parameter estimation. ◮ Micromechanical motivation of the evolution equations. Human fatigue illustrated by Akseli Gallen-Kallela 1894 Acknowledgements : The work was partially funded by TEKES - The National Technology Foundation of Finland (Business Finland from January 1, 2018), project MaNuMiES. Thank you for your attention!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend