a connection between time domain model order reduction
play

A connection between time domain model order reduction and moment - PowerPoint PPT Presentation

A connection between time domain model order reduction and moment matching Manuela Hund joint with Jens Saak September 2, 2016 Partners: Introduction Model order reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


  1. A connection between time domain model order reduction and moment matching Manuela Hund joint with Jens Saak September 2, 2016 Partners:

  2. Introduction Model order reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear time-invariant (LTI) system x ( t ) = ˙ x ( t ) + B u ( t ) E A y ( t ) = x ( t ) C M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 2/24

  3. Introduction Model order reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear time-invariant (LTI) system x ( t ) = ˙ x ( t ) + B u ( t ) E A y ( t ) = x ( t ) C E r = V T EV ∈ R m × m A r = V T AV ∈ R m × m B r = V T B ∈ R m × p C r = CV ∈ R q × m M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 2/24

  4. Introduction Model order reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear time-invariant (LTI) system x ( t ) = ˙ x ( t ) + B u ( t ) E A y ( t ) = x ( t ) C E r = V T EV ∈ R m × m A r = V T AV ∈ R m × m B r = V T B ∈ R m × p C r = CV ∈ R q × m Reduced LTI system: E r x r ( t ) = A r x r ( t )+ B r u ( t ) ˙ y r ( t ) = C r x r ( t ) M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 2/24

  5. Time domain MOR based on orthogonal polynomials Basic idea [ JIANG/CHEN 2012 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-Input Single-Output (SISO) system ( p = q = 1): E ˙ x ( t ) = Ax ( t ) + Bu ( t ) , y ( t ) = Cx ( t ) . M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 3/24

  6. Time domain MOR based on orthogonal polynomials Basic idea [ JIANG/CHEN 2012 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-Input Single-Output (SISO) system ( p = q = 1): E ˙ x ( t ) = Ax ( t ) + Bu ( t ) , y ( t ) = Cx ( t ) . Approximation of state and input: ( ∀ i : v i ∈ R n , w i ∈ R , g i : [ t 0 , t f ] → R ) m − 1 m − 1 � � x ( t ) ≈ x m ( t ) = v i g i ( t ) , u ( t ) ≈ u m ( t ) = w i ˙ g i ( t ) . i =0 i =1 Artificial initial condition: m − 1 � x 0 = x ( t 0 ) ≈ x m ( t 0 ) = v i g i ( t 0 ) . i =0 M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 3/24

  7. Time domain MOR based on orthogonal polynomials Restriction [ HUND 2015 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-Input Single-Output (SISO) system ( p = q = 1): E ˙ x ( t ) = Ax ( t ) + Bu ( t ) , y ( t ) = Cx ( t ) . Approximation of state and input: ( ∀ i : v i ∈ R n , w i ∈ R , g i : [ t 0 , t f ] → R ) m m � � x ( t ) ≈ x m +1 ( t ) = v i g i ( t ) , u ( t ) ≈ u m +1 ( t ) = w i ˙ g i ( t ) . i =1 i =1 Fixed initial condition:   0 .  ∈ R n . . x 0 = x ( t 0 ) =   .  0 M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 3/24

  8. Time domain MOR based on orthogonal polynomials Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 1 (Differential recurrence formula) [ HUND 2015 ] For three sequenced orthogonal polynomials g i ( t ), where i ∈ N 0 , it holds: g n ( t ) = α n ˙ g n +1 ( t ) + β n ˙ g n ( t ) + γ n ˙ g n − 1 ( t ) , n = 1 , 2 , . . . , where α n , β n , γ n are diffential recurrence coefficients. M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 4/24

  9. Time domain MOR based on orthogonal polynomials Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 1 (Differential recurrence formula) [ HUND 2015 ] For three sequenced orthogonal polynomials g i ( t ), where i ∈ N 0 , it holds: g n ( t ) = α n ˙ g n +1 ( t ) + β n ˙ g n ( t ) + γ n ˙ g n − 1 ( t ) , n = 1 , 2 , . . . , where α n , β n , γ n are diffential recurrence coefficients. application of differential recurrence formula in x m +1 ( t ) ⇒ application to state equation leads to expressions depending on g i ( t ) ˙ M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 4/24

  10. Time domain MOR based on orthogonal polynomials Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 1 (Differential recurrence formula) [ HUND 2015 ] For three sequenced orthogonal polynomials g i ( t ), where i ∈ N 0 , it holds: g n ( t ) = α n ˙ g n +1 ( t ) + β n ˙ g n ( t ) + γ n ˙ g n − 1 ( t ) , n = 1 , 2 , . . . , where α n , β n , γ n are diffential recurrence coefficients. application of differential recurrence formula in x m +1 ( t ) ⇒ application to state equation leads to expressions depending on g i ( t ) ˙ coefficient comparison leads to a linear system of equations Hv = f , where H ∈ R mn × mn , v ∈ R mn × 1 , f ∈ R mn × 1 M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 4/24

  11. Time domain MOR based on orthogonal polynomials Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 1 (Differential recurrence formula) [ HUND 2015 ] For three sequenced orthogonal polynomials g i ( t ), where i ∈ N 0 , it holds: g n ( t ) = α n ˙ g n +1 ( t ) + β n ˙ g n ( t ) + γ n ˙ g n − 1 ( t ) , n = 1 , 2 , . . . , where α n , β n , γ n are diffential recurrence coefficients. application of differential recurrence formula in x m +1 ( t ) ⇒ application to state equation leads to expressions depending on g i ( t ) ˙ coefficient comparison leads to a linear system of equations Hv = f , where H ∈ R mn × mn , v ∈ R mn × 1 , f ∈ R mn × 1 determine projection matrix V by orthogonalization of span { v 1 , . . . , v m } M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 4/24

  12. Time domain MOR based on orthogonal polynomials Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   E − β 1 A − γ 2 A 0 0 · · · · · · · · · . ...  .  − α 1 A E − β 2 A − γ 3 A .     . ...   .  0 − α 2 A E − β 3 A − γ 4 A .    . .  ... ... ... ... ...  . . H = ,   . .     . ... ... ... ...  .  . 0     . ... ... ...   .  . − γ m A  0 0 − α m − 1 A E − β m A · · · · · · · · ·   v 1 .   . v =  , .  v m   Bw 1 .   . f =  . .  Bw m M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 5/24

  13. Time domain MOR based on orthogonal polynomials Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   E − β 1 A − γ 2 A 0 0 · · · · · · · · · . ...  .  − α 1 A E − β 2 A − γ 3 A .     . ...   .  0 − α 2 A E − β 3 A − γ 4 A .    . .  ... ... ... ... ...  . . H = ,   . .     . ... ... ... ...  .  . 0     . ... ... ...   .  . − γ m A  0 0 − α m − 1 A E − β m A · · · · · · · · ·   v 1 .   . v =  , .  v m   Bw 1 .   . f =  . .  Bw m M. Hund, hund@mpi-magdeburg.mpg.de A connection between time domain MOR and moment matching 5/24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend