a comparative study of extrapolation methods sequence
play

A comparative study of extrapolation methods, sequence - PowerPoint PPT Presentation

A comparative study of extrapolation methods, sequence transformations and steepest descent methods Computing infinite-range integrals Richard M. Slevinsky and Hassan Safouhi Mathematical Section Campus Saint-Jean, University of Alberta


  1. A comparative study of extrapolation methods, sequence transformations and steepest descent methods Computing infinite-range integrals Richard M. Slevinsky and Hassan Safouhi Mathematical Section Campus Saint-Jean, University of Alberta hsafouhi@ualberta.ca SC2011 – International Conference on Scientific Computing October 10 – 14, 2011

  2. Oscillatory integrals: A numerical challenge − 3 x 10 8 0.15 6 0.1 4 0.05 2 0 0 − 0.05 − 2 − 0.1 − 4 − 0.15 − 6 − 0.2 − 8 0 5 10 15 20 25 30 0 5 10 15 20 25 30 Classical quadrature deteriorates rapidly as the oscillations become strong. New methods / New oscillatory quadrature methods were developed.

  3. The plan The three most popular methods : Extrapolation methods Sequence transformations Numerical steepest descent Applications & Comparison : We computed four integrals using the three methods We introduced some refinements to the algorithms We performed comparisons with regard to efficiency Conclusion

  4. Extrapolation methods Let f ( x ) satisfy: m ∞ α i � � p k ( x ) f ( k ) ( x ) p k ( x ) ∼ x k f ( x ) = where as x → ∞ . x i k =1 i =0 Then [ Levin & Sidi 1981 ]: � ∞ m − 1 ∞ β k , i � � x k +1 f ( k ) ( x ) f ( t ) d t ∼ x → ∞ . as x i x i =0 k =0 � ∞ Let D ( m ) represent approximations to f ( t ) d t [ Levin & Sidi ]: n 0 � x l m − 1 n − 1 ¯ β k , i D ( m ) � x k +1 f ( k ) ( x l ) � = f ( t ) d t + , n l x i 0 l k =0 i =0 where { x l } mn +1 is an increasing sequence. l =0 In general, m is equal or can be reduced to 1 or 2.

  5. Extrapolation methods D (2) When m = 2, we use the ¯ approximation [ Sidi 1982 ]: n � x n − 1 ¯ β 1 , i D (2) ¯ � = F ( x l ) + x 2 l f ′ ( x l ) F ( x ) = f ( t ) d t , where n x i 0 l i =0 where { x l } n +1 l =0 are the successive positive zeros of f ( x ). To compute D (1) D (2) or ¯ n , we use the W algorithm [ Sidi 1982 ]: n = M (1) = M (2) WD (1) D (2) n W ¯ n . or n n N (1) N (2) n n M ( j ) and N ( j ) for n , j = 1 , 2 , . . . , are computed recursively by: n n F ( x j ) 1 M ( j ) N ( j ) = and = 0 0 x 2 x 2 j f ′ ( x j ) j f ′ ( x j ) M ( j +1) − M ( j ) N ( j +1) − N ( j ) M ( j ) N ( j ) n − 1 n − 1 n − 1 n − 1 = and = . n n x − 1 j + n − x − 1 x − 1 j + n − x − 1 j j

  6. Sequence transformations Let us consider I ( λ ): � ∞ ∞ � I ( λ ) = f ( x ; λ ) d x ∼ a k ( λ ) . 0 k =0 S [ a ] − S n [ a ] ∼ R n [ a ] ⇒ S [ a ] ≈ S n [ a ] + R n [ a ] . Consider the case where the remainder is given by: ∞ c j � S [ a ] − S n [ a ] ∼ ω n n → ∞ . as ( n + β ) j j =0 A Levin transformation [ Levin 1973 ]: � ( n + β + j ) k − 1 k � k S n + j [ a ] � ( − 1) j ( n + β + k ) k − 1 ω n + j j j =0 L ( n ) k ( β ) = . � ( n + β + j ) k − 1 k � k 1 � ( − 1) j ( n + β + k ) k − 1 j ω n + j j =0

  7. Sequence transformations A recursive algorithm [ Fessler et al. 1983 ] to compute L ( n ) k ( β ): 1 For n = 0 , 1 , . . . , set: = S n [ a ] = 1 P ( n ) Q ( n ) and . 0 0 ω n ω n 2 For n = 0 , 1 , . . . , k = 1 , 2 , . . . , compute P ( n ) and Q ( n ) from: k k � k − 2 β + n � β + n + k − 1 U ( n ) = U ( n +1) U ( n ) − k − 1 , k k − 1 β + n + k β + n + k where the U ( n ) stand for either P ( n ) or Q ( n ) k . k k 3 For all n and k , set: = P ( n ) L ( n ) k . k Q ( n ) k We choose ω n = a n , which gives rise to the t ( n ) k ( β ) transformation.

  8. Numerical steepest descent Huybrechs and Vandewalle 2006 . Consider the integral: � b e i w g ( x ) = e − w ℑ g ( x ) e i w ℜ g ( x ) . f ( x ) e i w g ( x ) d x , I = a The steepest descent is based on: 1 e i w g ( x ) decays exponentially fast if ℑ g ( x ) > 0. 2 e i w g ( x ) does not oscillate if ℜ g ( x ) is fixed. 3 The value of I does not depend on the exact path taken (Cauchy theorem). A new path is defined at a [ Huybrechs & Vandewalle 2006 ]: g ( h a ( κ )) = g ( a ) + κ i κ ≥ 0 . with The integral is then equivalent to: � ∞ f ( a + κ i ) e − w κ i d κ. I = F ( a ) − F ( b ) where F ( t ) = e i w g ( a ) 0

  9. Numerical steepest descent 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 − 0.2 − 0.2 − 0.4 − 0.4 − 0.6 − 0.6 � − 0.8 − 0.8 0 5 10 15 20 25 30 0 5 10 15 20 25 30

  10. The first integral � ∞ e − x x + β d x = − e β Ei ( − β ) . I 1 ( β ) = 0 No substitution is required to apply Gauss-Laguerre quadrature. The integrand satisfies a first order linear differential equation: x + β x + β + 1 f ′ f 1 ( x ) = − 1 ( x ) . The integral has the asymptotic expansion: ∞ I 1 ( β ) ∼ 1 k ! � as β → ∞ . β ( − β ) k k =0

  11. The first integral Table: Numerical valuation of I 1 ( β ). Error WD (1) Error LT (0) Error GL n β n n n n n 0.03 124 .87(-03) 17 .22(-12) 16 .32(-01) 0.10 124 .25(-05) 17 .84(-12) 17 .11(-02) 0.30 124 .16(-09) 17 .71(-14) 17 .14(-05) 1.00 124 .13(-13) 12 .56(-15) 21 .18(-07) 3.00 34 .36(-14) 8 .13(-14) 20 .21(-12) 4.00 34 .40(-14) 7 .22(-14) 19 .40(-15) 5.00 22 .65(-15) 6 .31(-14) 18 .16(-15) 10.00 15 .61(-15) 3 .30(-14) 16 .30(-15) 30.00 9 .17(-14) 3 .47(-14) 13 .00( 00) 100.00 6 .18(-15) 2 .21(-14) 9 .18(-15) Calculation time WD (1) Calculation time LT (0) n n = 0 . 49 and Calculation time GL n = 0 . 075. Calculation time GL n

  12. Refinement – The first integral For the sequence transformation : As the values of the governing parameter(s) tend to 0 + , we resort to using a series representation of the integrals: � ∞ � ( − β ) k � I 1 ( β ) = − e β β → 0 + . C + ln β + as k · k ! k =1 For the Steepest descent : � ∞ � x n � ∞ f ( x ) e − x d x = e − x d x + e − x n f ( x + x n ) e − x d x 0 0 0 � x n � x i n e − x d x = f ( x ) e − x d x . � Compute 0 x i − 1 i =1 n is determined by: � x n � x n − 1 � � � � � < 1 � � � � f ( x ) e − x d x f ( x ) e − x d x � . � � � � 2 � � � � x n − 1 x n − 2 � �

  13. Refinement – The first integral Table: Numerical valuation of I 1 ( β ) with the refinement. Error WD (1) Error LT (0) Error GL n β n n n n n 0.03 70 .10(-12) 17 .22(-12) 7 .15(-15) 0.10 53 .18(-14) 17 .84(-12) 9 .00( 00) 0.30 41 .13(-14) 17 .71(-14) 12 .18(-15) 1.00 22 .13(-14) 12 .56(-15) 17 .00( 00) 3.00 12 .17(-14) 8 .13(-14) 28 .47(-14) 4.00 12 .17(-14) 7 .22(-14) 19 .40(-15) 5.00 12 .28(-14) 6 .31(-14) 18 .16(-15) 10.00 8 .33(-14) 3 .30(-14) 16 .30(-15) 30.00 6 .47(-14) 3 .47(-14) 13 .00( 00) 100.00 5 .19(-14) 2 .21(-14) 9 .18(-15) Calculation time WD (1) Calculation time LT (0) n n = 2 . 2 and Calculation time GL n = 0 . 27. Calculation time GL n

  14. The second integral � ∞ √ sin( b x ) d x = π � a � a � I 2 ( a , b ) = sin bJ 1 (2 a b ) . 2 x 0 Asymptotic expansion as a b → ∞ : √ � π a 1 � I 2 ( a , b ) ∼ cos(2 a b − 3 π/ 4) √ 2 b � 2 a b ∞ ( − 1) k Γ(3 / 2 + 2 k ) � × (16 a b ) k (2 k )! Γ(3 / 2 − 2 k ) k =0 √ ∞ � ( − 1) k − sin(2 a b − 3 π/ 4) Γ(5 / 2 + 2 k ) � √ . (16 a b ) k (2 k + 1)! Γ(1 / 2 − 2 k ) 4 a b k =0

  15. The second integral � a Splitting the integration interval with respect to x 0 = b : � x 0 � ∞ � a � a � � I 2 ( a , b ) = sin sin( b x ) d x + sin sin( b x ) d x x x 0 x 0 � sin( a x ) � ∞ � ∞ � b � a � = sin d x + sin sin( b x ) d x x 2 x x x − 1 x 0 0 � e i a x �� ∞ �� ∞ � � b � a � � e i b x d x = Im sin + Im sin . x 2 d x x x x − 1 x 0 0 The substitutions x new = i a ( x − 1 − x old ) and x new = i b ( x 0 − x old ) 0 lead to: � ∞ � � � e i a x − 1 � 0 e − x i b I 2 ( a , b ) = sin + i x / a ) 2 d x Im x − 1 ( x − 1 a + i x / a 0 0 0 � i � ∞ � a � � e i b x 0 e − x d x + sin . Im b x 0 + i x / b 0

  16. The second integral Table: Numerical valuation of I 2 ( a , b ). Error W ¯ D (2) Error LT (0) Error GL n a b n n n n n 1.0 1.0 124 .19(-09) 16 .86(-15) 23 .29(-08) 2.0 1.0 124 .60(-11) 17 .12(-14) 24 .34(-10) 2.0 2.0 124 .72(-12) 17 .17(-14) 24 .33(-12) 3.0 1.0 124 .12(-11) 18 .27(-15) 23 .10(-11) 3.0 2.0 124 .75(-14) 17 .55(-15) 25 .17(-14) 3.0 3.0 117 .68(-14) 17 .51(-15) 18 .13(-15) 10.0 1.0 124 .29(-14) 19 .16(-14) 20 .44(-15) 100.0 1.0 124 .76(-14) 10 .91(-01) 8 .21(-14) 10.0 10.0 124 .59(-14) 7 .79(-02) 8 .20(-14) 100.0 10.0 69 .20(-14) 8 .26( 01) 5 .16(-14) Calculation time W ¯ D (2) Calculation time LT (0) n n = 0 . 096 and Calculation time GL n = 0 . 011. Calculation time GL n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend