a carbuncle free roe type solver for the euler equations
play

A Carbuncle-free Roe-Type Solver for the Euler Equations Friedemann - PowerPoint PPT Presentation

A Carbuncle-free Roe-Type Solver for the Euler Equations Friedemann Kemm BTU Cottbus kemm@math.tu-cottbus.de 70 70 60 60 70 70 50 50 60 60 40 40 50 50 30 30 40 40 20 20 30 30 10 10 20 20 0 0 10 10 0 0 30 30 25


  1. A Carbuncle-free Roe-Type Solver for the Euler Equations Friedemann Kemm BTU Cottbus kemm@math.tu-cottbus.de 70 70 60 60 70 70 50 50 60 60 40 40 50 50 30 30 40 40 20 20 30 30 10 10 20 20 0 0 10 10 0 0 30 30 25 25 20 20 15 15 10 10 5 5 60 60 0 40 50 0 40 50 20 30 20 30 0 10 0 10

  2. Friedemann Kemm BTU Cottbus Stability of Discrete Shock Profiles 1d: • Post-shock oscillations (Quirk 1994; Jin & Liu 1996; Arora & Roe 1997, . . . ) • Godunov scheme: unstable discrete profiles (Bultelle, Grassin, Serre 1998) ⇒ tend to neighbouring stable profiles 2d: • High resolution Riemann solvers produce unstable profiles (Dumbser, Moschetta, Gressier 2004) • Same mechanism in Carbuncle and Odd-Even-Decoupling (Chauvat, Moschetta, Gressier 2005) 1

  3. Friedemann Kemm BTU Cottbus 1d-Stability ↔ 2d-Stability original shock location jump backwards entropy shear wave y transport jump forward x ⇒ Stabilization by viscosity on linear waves parallel to shock front 2

  4. Friedemann Kemm BTU Cottbus HLLE Solver t S l q HLL S r q l q r x • HLL: Constant intermediate state according to conservation • HLLE: Natural choice of bounding speeds: S L = min { ˜ u − ˜ a, u l − a l , 0 } S R = max { ˜ u + ˜ a, u r + a r , 0 } • High viscosity on shear and entropy waves 3

  5. Friedemann Kemm BTU Cottbus HLLEM • Comparison of viscosity matrices • With Roe eigenvalues as S L and S R u 2 − ˜ a 2 g Roe ( q r , q l ) = g HLL ( q r , q l ) − ˜ κ [˜ r 2 +˜ l T l T 2 ∆ q ˜ 3 ∆ q ˜ r 3 ] . 4˜ a with 2˜ a κ = ˜ a + | ˜ u | • Now for g HLL take S L , S R like for HLLE → HLLEM. • Exact resolution of entropy- and shear waves (Park, Kwon 2002) 4

  6. Friedemann Kemm BTU Cottbus HLL as Modification of Roe t u − ˜ ˜ u − φ ( θ ) ˜ ˜ a u + φ ( θ ) ˜ ˜ a u + ˜ ˜ a ˜ a u x • Harten Hyman type splitting of contact wave • HLL for φ ( θ ) = 1 • Same flux with HLLEM and κ replaced by (1 − φ ( θ )) κ 5

  7. Friedemann Kemm BTU Cottbus Desirable Properties of the new Solver • Exact Resolution of single discontinuities • No carbuncle • No information from neighbouring Riemann problems needed ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ flux to compute ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ strong shock? ✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞ ✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟ ✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎ ✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡ ✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠ ☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛ ☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎ ✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄ ☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞ ✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡ ✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠ ☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎ ✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄ ✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠ ✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡ ☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎ ✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄ ✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡ ✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠ ☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎ �✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁� ✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂ ✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄ ✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡ ✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠ ☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎ ✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡ ✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠ strong shock? ✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡ ✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠ ✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠ ✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡ ✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝ ✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆ ✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡ ✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠ ✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝ ✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆ 6

  8. Friedemann Kemm BTU Cottbus Indicator for Entropy- and Shear Waves Rankine-Hugoniot condition for single contact or shear wave: f ( q r ) − f ( q l ) = ˜ u ( q r − q l ) Idea: Residual in Rankine-Hugoniot condition as indicator: R := f ( q r ) − f ( q l ) − ˜ u ( q r − q l ) Relate to flow magnitudes: � R � � θ = � � ˜ a � 2 7

  9. Friedemann Kemm BTU Cottbus Completing the Switching Function Viscosity bounded by HLL(E): φ ( θ ) = min { 1 , θ } Relax by some parameter: φ ( θ ) = min { 1 , ε θ } Less dangerous when flow component parallel to shock: φ ( θ ) = min { 1 , ε θ max { 0 , 1 − M α u }} , α > 0 Make φ concave (experimental): φ ( θ ) = min { 1 , ( ε θ max { 0 , 1 − M α u } ) β } , 0 < β < 1 8

  10. Friedemann Kemm BTU Cottbus Application of the Switch Roe: • Split wave with ˜ u into waves with ˜ u − φ ( θ )˜ a and ˜ u + φ ( θ )˜ ⇒ RoeCC a HLLEM: • Multiply anti-diffusion coefficient κ by 1 − φ ( θ ) ⇒ HLLEMCC Both fluxes identical apart from entropy fix Reasonable setting: 1 α = β = 1 ε = 100 , 3 9

  11. Friedemann Kemm BTU Cottbus Quirk Test Quirk test: Godunov Quirk test: HLLEMCC, eps=0.01 5.5 5.5 5 5 4.5 4.5 4 4 3.5 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 Godunov HLLEMCC Quirk test: HLLEM Quirk test: HLLE 5.5 5.5 5 5 4.5 4.5 4 4 3.5 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 HLLEM HLLE 10

  12. Friedemann Kemm BTU Cottbus Steady Shock steady shock, Godunov steady shock, HLLEMCC 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 Godunov HLLEMCC steady shock, HLLEM steady shock, HLLE 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 HLLEM HLLE 11

  13. Friedemann Kemm BTU Cottbus Colliding Flow (2nd-Order) Colliding flow: Godunov Colliding flow: HLLEMCC 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 10 20 30 40 50 60 0 10 20 30 40 50 60 Godunov HLLEMCC Colliding flow: HLLEM Colliding flow: HLLE 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 10 20 30 40 50 60 0 10 20 30 40 50 60 HLLEM HLLE 12

  14. Friedemann Kemm BTU Cottbus Colliding Flow (2nd-Order) 70 70 60 60 70 70 50 50 60 60 40 40 50 50 30 30 40 40 20 20 30 30 10 10 20 20 0 0 10 10 0 0 30 30 25 25 20 20 15 15 10 10 5 5 50 60 50 60 0 30 40 0 30 40 10 20 10 20 0 0 Godunov HLLEMCC 70 70 60 60 70 70 50 50 60 60 40 40 50 50 30 30 40 40 20 20 30 30 10 10 20 20 0 0 10 10 0 0 30 30 25 25 20 20 15 15 10 10 5 5 60 60 0 40 50 0 40 50 20 30 20 30 0 10 0 10 HLLEM HLLE 13

  15. Friedemann Kemm BTU Cottbus Sod Problem: Contact Discontinuity HLLEMCC 0.42 HLLEM HLLE 0.4 0.38 0.36 0.34 0.32 0.3 0.28 0.26 0.6 0.65 0.7 0.75 0.8 0.85 14

  16. Friedemann Kemm BTU Cottbus Conclusions • No complete analysis available • Possible to avoid carbuncle while retaining exact resolution of contact waves • No information on neighbouring Riemann problems needed (efficiency) • Steady profiles replaced by stable neighbouring profiles 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend