24
play

24 Implementation of Iso-P Triangular Elements IFEM Ch 24 Slide - PDF document

Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM 24 Implementation of Iso-P Triangular Elements IFEM Ch 24 Slide 1 Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM


  1. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM 24 Implementation of Iso-P Triangular Elements IFEM Ch 24 – Slide 1

  2. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Peculiarities of Implementation of Iso-P Triangular Elements ● Special Gauss quadrature rules ● Computation of Jacobian and shape function x-y derivatives IFEM Ch 24 – Slide 2

  3. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM The 5 Simplest Gauss Rules Drawn over Straight Sided Triangles (number annotated near sample point is the weight) (a) rule=1 (b) rule=3 (c) rule= − 3 degree=1 degree=2 degree=2 0.33333 0.33333 0.33333 1.0000 0.33333 0.33333 0.33333 (d) rule=6 (e) rule=7 0.10995 0.12594 degree=4 degree=5 0.13239 0.13239 0.22338 0.22338 0.22500 0.22338 0.12594 0.12594 0.10995 0.10995 0.13239 IFEM Ch 24 – Slide 3

  4. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM The 5 Simplest Gauss Rules Drawn over Arbitrary (Curved Side) Triangles (number annotated near sample point is the weight) (a) rule=1 (b) rule=3 (c) rule= − 3 0.33333 0.33333 1.0000 0.33333 0.33333 0.33333 0.33333 0.12594 0.10995 (d) rule=6 (e) rule=7 0.13239 0.22338 0.22500 0.22338 0.13239 0.22338 0.13239 0.12594 0.10995 0.12594 0.10995 IFEM Ch 24 – Slide 4

  5. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Gauss Rules for Straight Sided Triangles 1-point (centroid) rule 1 � � ( e ) F (ζ 1 , ζ 2 , ζ 3 ) d � ( e ) ≈ F ( 1 3 , 1 3 , 1 3 ), A 3-internal-point rule � 1 � ( e ) F (ζ 1 , ζ 2 , ζ 3 ) d � ( e ) ≈ 1 3 F ( 2 3 , 1 6 , 1 6 ) + 1 3 F ( 1 6 , 2 3 , 1 6 ) + 1 3 F ( 1 6 , 1 6 , 2 3 ). A 3 midpoint rule � 1 � ( e ) F (ζ 1 , ζ 2 , ζ 3 ) d � ( e ) ≈ 1 3 F ( 1 2 , 1 2 , 0 ) + 1 3 F ( 0 , 1 2 , 1 2 ) + 1 3 F ( 1 2 , 0 , 1 2 ). A In the above A is the triangle area   1 1 1 � � ( e ) d � ( e ) = 1 A 2 det x 1 x 2 x 3 =   y 1 y 2 y 3 For 6 and 7 point rules see notes IFEM Ch 24 – Slide 5

  6. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Triangles of Arbitrary Geometry (e.g. Curved Sides) Introduce the Jacobian determinant 1 1 1   n n n ∂ N i ∂ N i ∂ N i � � �   x i x i x i   d � ( e ) = J d ζ 1 d ζ 2 d ζ 3 , ∂ζ 1 ∂ζ 2 ∂ζ 3 J = 1 2 det   i = 1 i = 1 i = 1     n n n ∂ N i ∂ N i ∂ N i   � � � y i y i y i ∂ζ 1 ∂ζ 2 ∂ζ 3 i = 1 i = 1 i = 1 Centroid rule � � ( e ) F (ζ 1 , ζ 2 , ζ 3 ) d � ( e ) ≈ J ( 1 3 , 1 3 , 1 3 ) F ( 1 3 , 1 3 , 1 3 ). Midpoint rule � � ( e ) F (ζ 1 , ζ 2 , ζ 3 ) d � ( e ) ≈ 1 3 J ( 1 2 , 1 2 , 0 ) F ( 1 2 , 1 2 , 0 ) + 1 3 J ( 0 , 1 2 , 1 2 ) F ( 0 , 1 2 , 1 2 ) + 1 3 J ( 1 2 , 0 , 1 2 ) F ( 1 2 , 0 , 1 2 ). etc IFEM Ch 24 – Slide 6

  7. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Triangle Gauss Quadrature Module TrigGaussRuleInfo[{rule_,numer_},point_]:= Module[ {zeta,p=rule,i=point,g1,g2,info=Null}, If [p== 1, info={{1/3,1/3,1/3},1}]; If [p==-3, zeta={1/2,1/2,1/2}; zeta[[i]]=0; info={zeta,1/3}]; If [p== 3, zeta={1/6,1/6,1/6}; zeta[[i]]=2/3; info={zeta,1/3}]; If [p== 6, If [i<=3, g1=(8-Sqrt[10]+Sqrt[38-44*Sqrt[2/5]])/18; zeta={g1,g1,g1}; zeta[[i]]=1-2*g1; info={zeta,(620+Sqrt[213125-53320*Sqrt[10]])/3720}]; If [i>3, g2=(8-Sqrt[10]-Sqrt[38-44*Sqrt[2/5]])/18; zeta={g2,g2,g2}; zeta[[i-3]]=1-2*g2; info={zeta,(620-Sqrt[213125-53320*Sqrt[10]])/3720}]]; If [p== 7, If [i==1,info={{1/3,1/3,1/3},9/40} ]; If [i>1&&i<=4,zeta=Table[(6-Sqrt[15])/21,{3}]; zeta[[i-1]]=(9+2*Sqrt[15])/21; info={zeta,(155-Sqrt[15])/1200}]; If [i>4, zeta=Table[(6+Sqrt[15])/21,{3}]; zeta[[i-4]]=(9-2*Sqrt[15])/21; info={zeta,(155+Sqrt[15])/1200}]]; If [numer, Return[N[info]], Return[Simplify[info]]]; ]; rule = defines Gauss rule (1, 3, -3, 6 and 7 implemented) numer = True or False to get numeric or exact info point = index of Gauss point, ranges from 1 through Abs[rule] returns abscissa { ζ , ζ , ζ } and weight 1 3 2 IFEM Ch 24 – Slide 7

  8. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Computation of Shape Function Derivatives 3 5 Illustrated for 6-node 6 quadratic triangle: 2 4 1  N 1  1 1 1 1 1 1 1     N 2   x x 1 x 2 x 3 x 4 x 5 x 6   Recall the iso-P N 3       y y 1 y 2 y 3 y 4 y 5 y 6   =      element definition: N 4       u x u x1 u x2 u x3 u x4 u x5 u x6      N 5   u y u y1 u y2 u y3 u y4 u y5 u y6 N 6 N 1 = ζ 1 ( 2 ζ 1 − 1 ), N 4 = 4 ζ 1 ζ 2 , N 2 = ζ 2 ( 2 ζ 2 − 1 ), N 5 = 4 ζ 2 ζ 3 , N 3 = ζ 3 ( 2 ζ 3 − 1 ), N 6 = 4 ζ 3 ζ 1 . IFEM Ch 24 – Slide 8

  9. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Partial Derivative Computation (Cont'd)   ζ 1 ( 2 ζ 1 − 1 ) ζ 2 ( 2 ζ 2 − 1 )     ζ 3 ( 2 ζ 3 − 1 )   w = [ w 1 w 2 w 3 w 4 w 5 w 6 ]   4 ζ 1 ζ 2     4 ζ 2 ζ 3   4 ζ 3 ζ 1 where w can be any interpolated quantity. Then � ∂ N i � ∂w ∂ N i ∂ζ 1 ∂ x + ∂ N i ∂ζ 2 ∂ x + ∂ N i ∂ζ 3 � � w i w i ∂ x = ∂ x = ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ x � ∂ N i � ∂w ∂ N i ∂ζ 1 ∂ y + ∂ N i ∂ζ 2 ∂ y + ∂ N i ∂ζ 3 � � w i w i ∂ y = ∂ y = ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ y IFEM Ch 24 – Slide 9

  10. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Partial Derivative Computation (Cont'd) ∂ζ 1 ∂ζ 1   ∂ x ∂ y   � ∂w � � w i ∂ N i � w i ∂ N i � w i ∂ N i ∂ζ 2 ∂ζ 2 ∂w �   � =   ∂ x ∂ y ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ x ∂ y     ∂ζ 3 ∂ζ 3 ∂ x ∂ y Make and stack the results row-wise w ≡ 1 , x , y � ∂ N i � ∂ N i � ∂ N i   ∂ζ 1 ∂ζ 1 ∂ 1 ∂ 1     ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ x ∂ y ∂ x ∂ y  � x i ∂ N i � x i ∂ N i � x i ∂ N i  ∂ζ 2 ∂ζ 2 ∂ x ∂ x        =      ∂ x ∂ y  ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ x ∂ y      ∂ y ∂ y ∂ζ 3 ∂ζ 3 � y i ∂ N i � y i ∂ N i � y i ∂ N i   ∂ x ∂ y ∂ x ∂ y ∂ζ 1 ∂ζ 2 ∂ζ 3 IFEM Ch 24 – Slide 10

  11. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Partial Derivative Computation (Cont'd) As shown in Notes, this system reduces to ∂ζ 1 ∂ζ 1 1 1 1     ∂ x ∂ y   0 0 � x i ∂ N i � x i ∂ N i � x i ∂ N i ∂ζ 2 ∂ζ 2     ∂ζ 1 ∂ζ 2 ∂ζ 3 1 0  =       ∂ x ∂ y    � y i ∂ N i � y i ∂ N i � y i ∂ N i 0 1 ∂ζ 3 ∂ζ 3 ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ x ∂ y unknowns are grouped here IFEM Ch 24 – Slide 11

  12. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Partial Derivative Computation (Cont'd) Replacing the shape functions of the 6-node triangle,  1 1 x 1 ( 4 ζ 1 − 1 ) + 4 x 4 ζ 2 + 4 x 6 ζ 3 x 2 ( 4 ζ 2 − 1 ) + 4 x 5 ζ 3 + 4 x 4 ζ 1  y 1 ( 4 ζ 1 − 1 ) + 4 y 4 ζ 2 + 4 y 6 ζ 3 y 2 ( 4 ζ 2 − 1 ) + 4 y 5 ζ 3 + 4 y 4 ζ 1 ∂ζ 1 ∂ζ 1   ∂ x ∂ y    1 0 0 ∂ζ 2 ∂ζ 2   x 3 ( 4 ζ 3 − 1 ) + 4 x 6 ζ 1 + 4 x 5 ζ 2 1 0  =      ∂ x ∂ y  y 3 ( 4 ζ 3 − 1 ) + 4 y 6 ζ 1 + 4 y 5 ζ 2 0 1 ∂ζ 3 ∂ζ 3 ∂ x ∂ y or JP = R where J and R are known. IFEM Ch 24 – Slide 12

  13. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Partial Derivative Computation (Cont'd) Solve J P = R for the partials ∂ζ 1 ∂ζ 1   ∂ x ∂ y ∂ζ 2 ∂ζ 2   P =   ∂ x ∂ y   ∂ζ 3 ∂ζ 3 ∂ x ∂ y Plug these in the chain rule to get the x-y partial derivatives of the shape functions, and use these to form the strain-displacement matrix B IFEM Ch 24 – Slide 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend