2 2 1 1
play

2 2 1 1 Michael Stone (ICMT Illinois) Spin and Velocity - PowerPoint PPT Presentation

2 2 1 1 Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 1 Berry Curvature, Spin, and Anomalous Velocity Michael Stone Institute for Condensed Matter Theory University of Illinois Michael Stone


  1. ω 2 α 2 ω 1 α 1 Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 1

  2. Berry Curvature, Spin, and Anomalous Velocity Michael Stone Institute for Condensed Matter Theory University of Illinois Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 2

  3. Talk based on: Motivation M.A.Stephanov, Y.Yin, Chiral Kinetic Theory , Phys. Rev. Lett. 109 162001 (2012). Our Work MS, V.Dwivedi, A Classical Version of the Non-Abelian Gauge Anomaly Phys. Rev. D88 045012 (2013). V.Dwivedi, MS, Classical chiral kinetic theory and anomalies in even space-time dimensions , J. Phys. A 47 025401 (2014). MS, V.Dwivedi, T.Zhou, Berry Phase, Lorentz Covariance, and Anomalous Velocity for Dirac and Weyl Particles , arXiv:1406.0354 Also important J.Y.Chen, D.T.Son, M.A.Stephanov, H.U.Yee, Y.Yin, Lorentz Invariance in Chiral Kinetic Theory , arXiv:1404.5963 Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 3

  4. Bruno Zumino 1923-2014 Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 4

  5. Outline Covariant Berry Connection 1 Anomalous Velocity WKB and Berry Berry,Thomas, and Pauli-Lubanski Relativistic Mechanics of Spinning Particles 2 Mathisson-Papatrou-Dixon equations Anomalous velocity Meaning of Conditions on Spin Tensor Massless Case 3 A Gauge Invariance? Wigner Translations Physical Meaning of Wigner Translations Conclusions 4 Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 5

  6. Covariant Berry Connection Outline Covariant Berry Connection 1 Anomalous Velocity WKB and Berry Berry,Thomas, and Pauli-Lubanski Relativistic Mechanics of Spinning Particles 2 Mathisson-Papatrou-Dixon equations Anomalous velocity Meaning of Conditions on Spin Tensor Massless Case 3 A Gauge Invariance? Wigner Translations Physical Meaning of Wigner Translations Conclusions 4 Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 6

  7. Covariant Berry Connection Anomalous Velocity Anomalous Velocity Luttinger, Blount, Niu, and others show that a Berry phase in the equations of motion of a Bloch quasiparticle ⇒ anomalous velocity: − ∂ε ( k , x ) ˙ k = + e ( ˙ x × B ) , ∂ x ∂ε ( k , x ) − ( ˙ x ˙ = k × Ω ) . ∂ k Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 7

  8. Covariant Berry Connection Anomalous Velocity Anomalous Velocity Luttinger, Blount, Niu, and others show that a Berry phase in the equations of motion of a Bloch quasiparticle ⇒ anomalous velocity: − ∂ε ( k , x ) ˙ k = + e ( ˙ x × B ) , ∂ x ∂ε ( k , x ) − ( ˙ x ˙ = k × Ω ) . ∂ k � Many applications! � Want to use for Dirac and Weyl particles � Can we make these equations covariant? Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 7

  9. Covariant Berry Connection Anomalous Velocity Anomalous Velocity Luttinger, Blount, Niu, and others show that a Berry phase in the equations of motion of a Bloch quasiparticle ⇒ anomalous velocity: − ∂ε ( k , x ) ˙ k = + e ( ˙ x × B ) , ∂ x ∂ε ( k , x ) − ( ˙ x ˙ = k × Ω ) . ∂ k � Many applications! � Want to use for Dirac and Weyl particles � Can we make these equations covariant? ˙ x × B ) → ˙ x ν , k = e ( E + ˙ k µ = eF µν ˙ µ = 0 , 1 , 2 , 3 . � Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 7

  10. Covariant Berry Connection Anomalous Velocity Anomalous Velocity Luttinger, Blount, Niu, and others show that a Berry phase in the equations of motion of a Bloch quasiparticle ⇒ anomalous velocity: − ∂ε ( k , x ) ˙ k = + e ( ˙ x × B ) , ∂ x ∂ε ( k , x ) − ( ˙ x ˙ = k × Ω ) . ∂ k � Many applications! � Want to use for Dirac and Weyl particles � Can we make these equations covariant? ˙ x × B ) → ˙ x ν , k = e ( E + ˙ k µ = eF µν ˙ µ = 0 , 1 , 2 , 3 . � x = v ε − ( ˙ x i = v i,ε + Ω ij ˙ k j , ˙ k × Ω ) → ˙ i = 1 , 2 , 3 . ? Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 7

  11. Covariant Berry Connection WKB and Berry Covariant WKB for Dirac Look for WKB solution of Dirac equation ( i � γ µ ( ∂ µ + ieA µ / � ) − m ) ψ = 0 . as ψ ( x ) = a ( x ) e − iϕ ( x ) / � , a = a 0 + � a 1 + � 2 a 2 + . . . , where a 0 ( x ) = u α ( k ( x )) C α ( x ) and u α ( k ) (and later v α ( k ) ) are solutions to ( γ µ k µ − m ) u α ( k ) = 0 ( γ µ k µ + m ) v α ( k ) = 0 covariantly normalized so that u α u β = δ αβ = − ¯ ¯ v α v β Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 8

  12. Covariant Berry Connection WKB and Berry Spin Transport Equation Plug WKB solution into Dirac. Find that ∂V µ � � V µ ∂ ∂x µ + 1 � + ie � 2 mS µν αβ F µν − i a αβ,ν ˙ k ν C β ( x ) = 0 . δ αβ ∂x µ 2 where ie 2 mS µν αβ F µν gives Larmor precession, and ∂u β a αβ,ν = i ¯ u α ∂k ν , ν = 0 , 1 , 2 , 3 is an unconventional, but covariant Berry connection. Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 9

  13. Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski Covariant Berry Curvature Matrix-valued connection form ∂u β a αβ,ν dk ν = i ¯ ∂k ν dk ν . u α Curvature form F = d a − i a 2 . Use Dirac equation to find 1 2 m 2 ( S µν ) αβ dk µ ∧ dk ν , F αβ = where � i � ( S µν ) αβ = ¯ u α 4[ γ µ , γ ν ] u β = i ¯ u α σ µν u β . Note that Dirac ⇒ k µ S µν = 0 . Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 10

  14. Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski Pauli-Lubanski Tensor Use mass-shell condition E 2 ≡ k 2 0 = k 2 + m 2 to eliminate k 0 and find that 1 � S ij − k i k j � dk i ∧ dk j , F αβ = E S 0 j − S i 0 2 m 2 E αβ Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 11

  15. Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski Pauli-Lubanski Tensor Use mass-shell condition E 2 ≡ k 2 0 = k 2 + m 2 to eliminate k 0 and find that 1 � S ij − k i k j � dk i ∧ dk j , F αβ = E S 0 j − S i 0 2 m 2 E αβ Expression in parentheses is a skew-symmetric tensor generalization of the Pauli-Lubanski vector Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 11

  16. Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski Berry versus Llewellyn Thomas Explicitly, in 3+1 dimensions we have � 1 � �� 1 ( k · σ ) k F = σ + · ( d k × d k ) . 2 m 2 γ 2 m 2 (1 + γ ) Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 12

  17. Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski Berry versus Llewellyn Thomas Explicitly, in 3+1 dimensions we have � 1 � �� 1 ( k · σ ) k F = σ + · ( d k × d k ) . 2 m 2 γ 2 m 2 (1 + γ ) What does this mean this physically? Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 12

  18. Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski Berry versus Llewellyn Thomas Explicitly, in 3+1 dimensions we have � 1 � �� 1 ( k · σ ) k F = σ + · ( d k × d k ) . 2 m 2 γ 2 m 2 (1 + γ ) What does this mean this physically? Look at connection 1 � σ � a αβ,i ˙ m 2 (1 + γ )( k × ˙ k i = k ) · 2 αβ γ 2 � σ � 1 + γ ( β × ˙ = β ) · αβ , β = k /E = k /mγ 2 � σ � = − ω Thomas · αβ . 2 Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 12

  19. Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski Berry versus Llewellyn Thomas Explicitly, in 3+1 dimensions we have � 1 � �� 1 ( k · σ ) k F = σ + · ( d k × d k ) . 2 m 2 γ 2 m 2 (1 + γ ) What does this mean this physically? Look at connection 1 � σ � a αβ,i ˙ m 2 (1 + γ )( k × ˙ k i = k ) · 2 αβ γ 2 � σ � 1 + γ ( β × ˙ = β ) · αβ , β = k /E = k /mγ 2 � σ � = − ω Thomas · αβ . 2 Covariant Berry-transport is Thomas precession Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 12

  20. Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski Nishina, Thomas, Hund Yoshio Nishina, Llewellyn Thomas, Friedrich Hund Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 13

  21. Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski Thomas versus Lobachevsky Thomas precession is parallel transport on the positive-energy mass-shell: Z P −R R X Q Embedding of three-dimensional Lobachevsky space into four-dimensional Minkowski space. The arrow shows the sterographic parametrization of the e ball x 2 1 + x 2 2 + x 2 3 < R 2 . embedded space by the Poincar´ Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 14

  22. Covariant Berry Connection Berry,Thomas, and Pauli-Lubanski Non-covariant WKB With u † α u β = δ αβ = v † α v β , have � ∂ � � � ∂t + v · ∇ + 1 C β ( x , t ) = 0 , δ αβ 2div v + N αβ with � � � � � � e 1 σ + 1 ( k · σ ) k − i A αβ,i ˙ k i , N αβ = − i B · mγ 2 m 2 2 γ + 1 αβ ∂u β A αβ,i = iu † ∂k i , i = 1 , 2 , 3 α and �� � 1 σ + 1 ( k · σ ) k � F αβ = − · ( d k × d k ) . 2 m 2 γ 3 m 2 γ + 1 αβ Michael Stone (ICMT Illinois) Spin and Velocity ESI Vienna, August 11th 2014 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend