100 noninductive operation at high beta using off axis
play

100% Noninductive Operation at High Beta Using Off-Axis ECCD by M. - PowerPoint PPT Presentation

100% Noninductive Operation at High Beta Using Off-Axis ECCD by M. Murakami in collaboration with C.M. Greenfield, 2 M.R. Wade, 1 T.C. Luce, 2 , J.R. Ferron, 2 H.E. St. John, 2 M.A. Makowski, 3 M.E. Austin, 4 S.L. Allen, 3 D.P. Brennan, 5 K.H.


  1. 100% Noninductive Operation at High Beta Using Off-Axis ECCD by M. Murakami in collaboration with C.M. Greenfield, 2 M.R. Wade, 1 T.C. Luce, 2 , J.R. Ferron, 2 H.E. St. John, 2 M.A. Makowski, 3 M.E. Austin, 4 S.L. Allen, 3 D.P. Brennan, 5 K.H. Burrell, 2 T.A. Casper, 1 J.C. DeBoo, 2 E.J. Doyle, 6 A.M. Garofalo, 7 P.Gohil, 2 I.A. Gorelov, 2 R.J. Groebner, 2 J. Hobirk, 8 A.W. Hyatt, 2 R.J. Jayakumar, 3 K. Kajiwara, 5 C.E. Kessel, 9 J.E. Kinsey, 10 R.J. La Haye, 2 J.Y. Kim, 2 L.L. Lao, 2 J. Lohr, 2 J.E. Menard, 9 C.C. Petty, 2 T.W. Petrie, 2 R.I. Pinsker, 2 P.A. Politzer, 2 R. Prater, 2 T.L. Rhodes, 6 A.C.C. Sips, 8 G.M. Staebler, 2 T.S. Taylor, 2 G. Wang, 6 W.P. West, 2 L. Zeng, 6 and the DIII–D Team 1 Oak Ridge National Laboratoty, Oak Ridge, Tennessee, USA 2 General Atomics, P.O. Box 85608, San Diego, California, USA 3 Lawrence Livermore National Laboratory, Livermore, California, USA 4 University of Texas at Austin, Austin, Austin, Texas, USA 5 Oak Ridge Institute for Science Education, Oak Ridge, Tennessee, USA 6 University of California at Los Angeles, Los Angeles, California, USA 7 Columbia University, New York, New York, USA 8 Max-Planck-Institut for Plasmaphysiks, Garching, Germany 9 Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA 10 Lehigh University, Bethleham, Pennsylvania, USA Presented at 20th IAEA Fusion Energy Conference Vilamoura, Portugal November 2, 2004 DIII–D NATIONAL FUSION FACILITY S A N D I E G O

  2. DIII-D AT PROGRAM GOAL: SCIENTIFIC BASIS FOR STEADY STATE, HIGH PERFORMANCE OPERATION IN FUTURE TOKAMAKS 0.5 � Steady-state operation Normalized fusion performance, G DIII-D — 100% noninductive fraction: f NI = I NI /I p AT Baseline Hybrid — High Bootstrap current fraction: f BS = I BS /I P � � p target 0.4 regime regime � Maintaining sufficient fusion gain with reduced engineering parameters 0.3 — Hgh � T — High � E 0.2 � High Normalized fusion performance: G = � N H/q 2 ITER glf23 simulation � DIII-D AT experiments have demonstrated ITER Q~5 (f NI =1) performance required for ITER steady state steady state 0.1 scenarios scenario High β p, high q regime 0.0 0.0 0.2 0.4 0.6 0.8 Bootstrap current fraction, f BS T. Luce: OV1-3 G. Sips: IT/P3-36 10/31/04: IAEA2004:v3.3 -- MM

  3. 100% NONINDUCTIVELY DRIVEN PLASMAS OBTAINED WITH GOOD CURRENT DRIVE ALIGNMENT EQUILIBRIUM MEASUREMENTS 150 Toroidal Current Density (A/cm ) 2 120096.4160 J tot 100 50 J OH 0 –50 0.0 0.2 0.4 0.6 0.8 1.0 RADIUS, ρ � f NI = 1 – f OH ; J OH = � neo E | | � � neo �� pol / � t � f OH = 0.5%, f NI = 99.5% � � T = 3.5%, � N = 3.6, q 95 = 5.4 10/31/04: IAEA2004:v3.3 -- MM

  4. CRITICAL ISSUES COVERED IN THIS TALK Self- c onsistent solutions for full noninductive, high performance operation � requires: 1. f NI = 100% 2. Good current drive alignment 3. Pressure profile evolution stable for ideal MHD and NTMs 4. Current profile stops evolving (E | | � 0 everywhere) Predictive modeling: � — Validated by the experiment — Projects longer sustainment of 100% noninductive in DIII-D — Applied to the ITER steady-state scenario development 10/31/04: IAEA2004:v3.3 -- MM

  5. PREDICTIVE SIMULATIONS INDICATE PREVIOUS ECCD DISCHARGE COULD BE EXTENDED TO 100% NONINDUCTIVE WITH INCREASED NBI POWER Modeling Modeling 1.2 1.5 Non-Inductive Current Fractions J ( ρ ) t = 7.0 s [ ] MA/m 2 Jtotal 1.0 fNI(t) 1.0 0.8 J shot 111221 NBCD 0.6 J BS 0.5 20 P (t) J ECCD inj 0.4 4 MW 0 10 [MW] 0.2 J OH P ECCDj -0.5 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 2 3 4 5 6 7 Time (s) Normalized Radius, ρ � Two tr ansport models produce consistent results: — Scaled experimental transport coefficients — Recalibrated GLF23 10/31/04: IAEA2004:v3.3 -- MM

  6. WITH HI GHER NBI POWER, 100% NONINDUCTIVE CURRENT ACHIEVED, BUT NOT FULLY RELAXED 16 1.0 114741 12 P inj (MW) 8 0.5 J OH ( ρ ) @ t = 3.12 s MA/m 2 P EC 4 0 0.0 1.2 f NI (TRANSP) TRANSP 0.8 f NI (NVLOOP) -0.5 NVLOOP 0.4 f BS 0.0 -1.0 2.4 2.6 2.8 3.0 3.2 3.4 3.6 0.0 0.2 0.4 0.6 0.8 1.0 TIME (s) Radius, ρ � Achi eved net f NI � 100 % with � N � 3.5, � � 3.6% � However, local Ohmic current is NOT zero 10/31/04: IAEA2004:v3.3 -- MM

  7. WITH HIGHER NBI POWER, 100% NONINDUCTIVE CURRENT ACHIEVED, BUT NOT FULLY RELAXED 16 1.0 12 P inj (MW) J OH ( ρ ) at t = 3.12 s 8 0.5 MA/m 2 P EC TRANSP 4 0 0.0 1.2 f NI (TRANSP) f NI (NVLOOP) 0.8 –0.5 NVLOOP 0.4 f BS –1.0 0.0 0.0 0.2 0.4 2.5 0.6 0.8 1.0 q 0 Radius, ρ 2.0 1.5 q min � Achieved net f NI � 100 % with � N � 3.5, � � 3.6% 1.0 20 � However, local Ohmic current i s NOT zero |B| n=1 (G) � Neutral beam overdrive near the axi s 10 n=2 decreases q 0 , resulting in NTM s n=3 0 � Confinement somewhat degraded (large P NB 2.4 2.6 2.8 3.0 3.2 3.4 3.6 demand) in these discharges Time (s) — Rotation velocity often slower — Flatter q profiles ... often more monotonic 10/31/04: IAEA2004:v3.3 -- MM

  8. IMPROVED CONFINEMENT RESULTS IN REDUCED NEUTRAL BEAM CURRENT DRIVE NEAR THE AXIS 90 80 NBCD (0) (A/cm ) 2 70 60 50 40 J 30 20 1.4 1.6 1.8 2.0 2.2 2.4 2.6 H 89 � Confinement improvement in recent experiments is attributed to: — Optimized non-axisymmetric field feedback — Slightly negative central shear 10/31/04: IAEA2004:v3.3 -- MM

  9. WITH IMPROVED CONFINEMENT, f NI =100% ACHIEVED WITH GOOD CD ALIGNMENT 200 150 Local toroidal current density (A/cm ) 2 MSE Array 120096F05 Flux Surface Averaged Toroidal 〈 J( ρ ) 〉 Tangential Radial Current Density (A/cm ) 2 Edge 150 100 J tot Analysis (EFIT) J φ(ρ) 100 50 0 50 J OH (NVLOOP) 0 –50 2.0 2.2 2.4 1.6 1.8 0.0 0.2 0.4 0.6 0.8 1.0 Midplane major radius, R (m) RADIUS, ρ � f OH = 0.5%, f NI = 99.5% 10/31/04: IAEA2004:v3.3 -- MM

  10. WITH IM PROVED CONFINEMENT, f NI =100% ACHIEVED WITH GOOD CD ALIGNMENT 200 150 Local toroidal current density (A/cm ) 2 MSE Array 120096F05 Flux Surface Averaged Toroidal 〈 J( ρ ) 〉 Tangential Radial Current Density (A/cm ) 2 Edge 150 100 J tot Analysis (EFIT) J φ (ρ) J boot J NB 100 50 J EC 0 50 JOH J OH (NVLOOP) 〈 J J 〉 (calc.) (calc.) EC EC (TRANSP) 0 –50 2.0 2.2 2.4 1.6 1.8 0.0 0.2 0.4 0.6 0.8 1.0 Midplane major radius, R (m) RADIUS, ρ � f OH = 0.5%, f NI = 99.5% � Anal ysis shows: f BS =59% f NB =31% f EC = 8% f NI = 98% � Cha llenge: — Measurement: Local representation in EFIT, . . . — Analysis/modeling: Bootstrap model near axis and edge, . . . � These analyses indicate achi evement of f NI � 100% 10/31/04: IAEA2004:v3.3 -- MM

  11. PRESSURE PROFILE EVOLUTION RESULTED IN n=1 FAST GROWING MODE WHICH TRIGGERED n=1 NTM 120096 4 (h) 6 β N 3 100 p(0)/ 〈 p 〉 (gauss) 2 n=1 ~ n e (0)/ 〈 n e 〉 |B| Unstable 1 10 0 Fit to modeling data |B| n=1 (G) 4 for n=1 beta limit 5 4095 4091 TIME (ms) t = 4.09 s 0 5.0 2 2.5 |B|n=2 (G) 0 t = 0.4 s 5.0 t = 4.8 s 0 2.5 1 2 3 4 5 |B|n=3 (G) Pressure peaking facor, p(0)/ 〈 p 〉 0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 Time (s) � n=1 ideal instability caused by pressure peaking primarily due to density peaking � Sustai ned n=1 NTM terminates high performance phase J. Ferron: EX/P-2-20 10/31/04: IAEA2004:v3.3 -- MM

  12. NEARLY FULL NONINDUCTIVE, STATIONARY DISCHARGE OBTAINED, LIMITED ONLY BY GYROTRON PULSE LENGTH 10 118419 MSE Channels 1 - 11 5 MSE Pitch 0 Angle (deg.) –5 –10 4 gyrotrons → 3 ECCD ECCD –15 2.5 3.0 3.5 5.0 4.0 4.5 TIME (s) � M SE signals stationary � J � ( � ) stopped evolving � f NI ~ 90% for 1 � R (=1. 8s ) � � T = 3.7%, � N = 3.5, q 95 = 5.1 � G= � N H/q 2 = 0.3 with f BS =63% 10/31/04: IAEA2004:v3.3 -- MM

  13. GLF23/ ONETWO CAN REPRODUCE EXPERIMENTAL PROFILES REASONABLY WELL, AND ALSO CAN PREDICT STEADY STATE PERFORMANCE IN TOKAMAKS 8 15 2.0 160 keV 10 5 (rad/s) A/cm 2 Data (111221.03840) J tot ( ρ ) GLF23 ( +560 ms ) 6 1.5 120 10 Ti ( ρ ) 4 1.0 80 Ω tor ( ρ ) q ( ρ ) 5 2 0.5 40 Te ( ρ ) (a) (b) (c) 0 0 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Radius, ρ Radius, ρ Radius, ρ � Good coupling between experiment and modeling 10/31/04: IAEA2004:v3.3 -- MM

  14. GLF23/ONETWO CAN REPRODUCE EXPERIMENTAL PROFILES REASONABLY WELL, AND ALSO CAN PREDICT STEADY STATE PERFORMANCE IN TOKAMAKS 8 15 2.0 160 A/cm 2 keV 10 5 (rad/s) Data (111221.03840) J tot ( ρ ) GLF23 ( +560 ms ) 6 1.5 120 GLF23 ( steady state ) 10 Ti ( ρ ) 4 1.0 80 Ω tor ( ρ ) q ( ρ ) 5 2 0.5 40 Te ( ρ ) (a) (b) (c) 0 0 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Radius, ρ Radius, ρ Radius, ρ � Good coupling between experiment and modeling � Numerical advance (global convergence technique) incorporated into ONETWO allows prediction of steady state in one step (without time stepping calculation) 10/31/04: IAEA2004:v3.3 -- MM

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend