1
play

1 Example: Component Models Example: Subset- -Minimal Diagnosis - PDF document

Diagnosis as Semiring- Diagnosis as Semiring -based based Constraint Optimization Constraint Optimization Martin Sachenbacher, MIT CSAIL Brian C. Williams, MIT CSAIL Overview Overview Diagnosis traditionally viewed as logical reasoning


  1. Diagnosis as Semiring- Diagnosis as Semiring -based based Constraint Optimization Constraint Optimization Martin Sachenbacher, MIT CSAIL Brian C. Williams, MIT CSAIL Overview Overview � Diagnosis traditionally viewed as logical reasoning – (de Kleer and Williams 87), (Reiter 87), … � But more naturally viewed as constraint optimization – Minimal set of faulty components, most likely fault, … � Framework that unifies qualitative and quantitative notions of diagnosis using semiring-based CSP – Choose appropriate semiring and construct constraints � Diagnosis algorithms based on optimization methods – Dynamic programming with focus on leading solutions Diagnostic Example Diagnostic Example Classical Formulation of Diagnosis Classical Formulation of Diagnosis � Boolean Polycell (Williams, Ragno 2003) � Component Models (CSP) – Domains D = D 1 , …, D n a – Variables X = x 1 , x 2 , …, x n x 1 – Constraints F = f 1 , f 2 , …, f m b f – Constraints are functions var(f i ) → { ⊥ , } ⊥ o1 1 0 – Solution is assignment to Z ⊆ X satisfying constraints c y a1 � Preference Model 1 g – Cover faults minimally (Subset-Minimal Diagnosis) d o2 1 – Fewest faults (Cardinality-Minimal Diagnosis) 0 – Most likely faults (Probabilistic Diagnosis) e z a2 1 o3 1

  2. Example: Component Models Example: Subset- -Minimal Diagnosis Minimal Diagnosis Example: Component Models Example: Subset � Constraints F = { f O1 , f O2 , f O3 , f A1 , f A2 } � Cover faults: o1=B {o1}, a1=B {a1}, o2=a2=B {o2,a2} O3 c e z a ⊥ G 1 0 1 O1 a c x x A1 x y f 1 ⊥ B 1 0 0 ⊥ b G 1 1 1 f ⊥ G 0 0 0 ⊥ B 1 0 1 o1 ⊥ B 1 1 0 1 0 ⊥ G 0 1 0 ⊥ c B 1 1 1 y a1 G 1 0 0 ⊥ A2 y z g 1 ⊥ B 0 0 0 g ⊥ G 1 1 1 d ⊥ o2 B 0 1 0 O2 b d y ⊥ 1 B 0 0 1 0 ⊥ B 1 0 0 ⊥ G 1 1 1 ⊥ e z B 0 1 1 a2 ⊥ B 1 1 0 ⊥ B 1 1 0 ⊥ 1 B 1 0 1 ⊥ B 1 1 1 o3 ⊥ B 1 1 1 Diagnosis as Optimization Diagnosis as Optimization Example: Subset Example: Subset- -Minimal Diagnosis Minimal Diagnosis � Objective Function U: Z → 2 Z � Component Models (CSP) – Domains D = { D 1 , …, D n } – Variables X = { x 1 , x 2 , …, x n } O1 O2 O3 A1 A2 – Constraints F = { f 1 , f 2 , …, f m } ∅ G G G G G – Constraints are functions var(f i ) → { ⊥ , } ⊥ {A2} – Solution is assignment to Z ⊆ X satisfying constraints G G G G B {A1} G G G B G � Preference Model G G G B B {A1,A2} – Set of preferences A – Objective function U: Z → A G G B G G {O3} – Partial order ≤ A on A forming lattice G G B G B {O3,A1} � Complete: Each I ⊆ A has lub, glb … … � Distributive: glb(a,lub(b,c)) = lub(glb(a,b),glb(a,c)) – Solution maximizes U Example: Subset- Example: Subset -Minimal Diagnosis Minimal Diagnosis Soft Constraints Soft Constraints � Partial order ≤ A defined by set inclusion ⊆ � Include Preferences in CSP – Domains D = D 1 , …, D n ∅ – Variables X = x 1 , x 2 , …, x n – Variables of interest Z ⊆ X {O1} {O2} {O3} {A1} {A2} – Set of preferences A – Constraints F = f 1 , f 2 , …, f m … – Constraints are functions var(f i ) → A � How to combine preferences? – Generalize constraint combination ( ⊗ ) {O1,O2,O3,A1} {O1,O2,O3,A2} {O1,O2,A1,A2} {O1,O3,A1,A2} {O2,O3,A1,A2} � How to compare preferences? – Generalize constraint projection ( ⇓ ) {O1,O2,O3,A1,A2} 2

  3. Semiring- -based CSPs (Bistarelli 95) based CSPs (Bistarelli 95) Diagnosis as Semiring- -based CSP based CSP Semiring Diagnosis as Semiring � Operator × to combine a,b ∈ A (defines ⊗ ) Component Models Preference Model � Operator + to compare a,b ∈ A (defines ⇓ ) Hard Objective Partial – a ≤ A b iff a + b = b (b “better” than a) Constraints Function Order � (A, + , × , 0, 1) forms a c-semiring f j : var(f j ) → { ⊥ , } ⊥ U: Z → A ≤ A – + is commutative, associative, a + 0 = a – × is associative, a × 0 = 0 – × distributes over + Separation – + is idempotent – × is commutative Soft Constraints f j : var(f j ) → A – a + 1 = 1 C-semiring Semiring-based CSP (SCSP) Construct Semiring Construct Semiring Separate Objective Function Separate Objective Function � Let 0 = ⊥ = lub(A), 1 = = glb(A), + = lub, × = glb ⊥ � Faults are independent: U(t) = u 1 (t) × u 2 (t) × … × u k (t) O1 O2 O3 A1 A2 A2 y z g A1 O2 O3 A1 A2 ∅ ∅ ∅ G G G G G G 1 1 1 G G G G G Preference Model ∅ {A2} G G G G B {A2} B 0 0 1 G G G G B ∅ {A1} G G G B G G G G B G {A1} B 0 1 1 ∅ G G G B B {A1,A2} G G G B B {A1,A2} B 1 0 1 ∅ … … G G B G G {O3} B 1 1 1 … … O1 O2 A2 Component Preference Model … ∅ ∅ ∅ Model G G G B {O1} {O2} B {A2} B Construct Soft Constraints Construct Soft Constraints Notions of Diagnosis as SCSP Notions of Diagnosis as SCSP � Apply each u i to constraint f j with var(u i ) ⊆ var(f j ) � Subset-Minimal Diagnosis – S s = (2 Z , ∩ , ∪ , Z, ∅ ) � Cardinality-Minimal Diagnosis A2 y z g A2 y z g – S c =(N 0 ∪ ∞ ,min,+, ∞ ,0) ∅ ∅ A2 G 1 1 1 G 1 1 1 ∅ ⊗ � Probabilistic Diagnosis {A2} B 0 0 1 ∅ = B 0 0 1 G ∅ – S p = ([0,1], max, ⋅ , 0,1) {A2} B 0 1 1 B 0 1 1 {A2} B ∅ {A2} B 1 0 1 B 1 0 1 ∅ {A2} B 1 1 1 B 1 1 1 O1 a c x O1 a c x O1 a c x ∅ 0 G 1 1 1 G 1 1 1 G 1 1 1 .99 Component Preference Soft B 1 1 0 {O1} B 1 1 0 1 B 1 1 0 .01 Model Model Part Constraint B 1 1 1 {O1} B 1 1 1 1 B 1 1 1 .01 3

  4. Tree Decomposition Tree Decomposition Diagnosis using Optimization Methods Diagnosis using Optimization Methods � Tree T = (V,E) with labeling functions χ , λ such that: Construction of soft constraints doesn’t affect network � – For each f j ∈ F, there is exactly one v ∈ V such that f j ∈ λ (v); Decompose SCSP into equivalent acyclic instance � For this v, vars(f j ) ⊆ χ (v) (“covering”) – Combine constraints responsible for cyclicity – For each x i ∈ X, the set {v ∈ V | x i ∈ χ (v)} induces a connected subtree of T (“connectedness”) Decomposition χ -label λ -label {O3,A1,c,e,f,x,y,z} {f O3 ,f A1 } y,z y c,x {A2,g,y,z} {f A2 } {O2,b,d,y} {f O2 } {O1,a,c,x} {f O1 } Tree- Tree -based Diagnosis Algorithms based Diagnosis Algorithms Bottom- Bottom -Up Dynamic Programming Up Dynamic Programming � Solve tree-structured SCSP instance in two phases � Cardinality-Minimal Diagnosis – Bottom-up dynamic programming phase G G 1 0 0 0 0 1 0 – Top-down solution enumeration phase G G 1 0 0 0 1 1 0 {O3,A1,c,e,f,x,y,z} {f O3 ,f A1 } � Focus on leading solutions using SCSP properties G G 1 0 0 1 0 1 0 – Early pruning due to extensiveness … … y,z y c,x {A2,g,y,z} {f A2 } {O2,b,d,y} {f O2 } {O1,a,c,x} {f O1 } Bottom-up G 1 1 1 0 G 1 1 1 0 G 1 1 1 0 B 1 1 1 1 B 1 1 1 1 Top-down B 1 1 1 1 B 1 0 1 1 B 1 1 0 1 B 1 1 0 1 B 1 1 0 1 B 1 0 0 1 Bottom- Bottom -Up Dynamic Programming Up Dynamic Programming Bottom Bottom- -Up Dynamic Programming Up Dynamic Programming � Cardinality-Minimal Diagnosis � Cardinality-Minimal Diagnosis G G 1 0 0 0 0 1 0 G G 1 0 0 0 0 1 0 G G 1 0 0 0 1 1 0 G G 1 0 0 0 1 1 0+0 {O3,A1,c,e,f,x,y,z} {f O3 ,f A1 } {O3,A1,c,e,f,x,y,z} {f O3 ,f A1 } G G 1 0 0 1 0 1 0 G G 1 0 0 1 0 1 0 … … … … y,z y c,x y,z y c,x {A2,g,y,z} {f A2 } {O2,b,d,y} {f O2 } {O1,a,c,x} {f O1 } {A2,g,y,z} {f A2 } {O2,b,d,y} {f O2 } {O1,a,c,x} {f O1 } 0 0 G 1 1 1 0 G 1 1 1 0 G 1 1 1 G 1 1 1 0 G 1 1 1 0 G 1 1 1 1 1 B 1 1 1 1 B 1 1 1 1 B 1 1 1 B 1 1 1 1 B 1 1 1 1 B 1 1 1 B 1 0 1 1 B 1 1 0 1 B 1 0 1 1 B 1 1 0 1 B 1 1 0 1 B 1 1 0 1 B 1 1 0 1 B 1 1 0 1 B 1 0 0 1 B 1 0 0 1 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend