zhang s inequality for log concave functions
play

Zhangs inequality for log-concave functions B. Gonz alez Merino* - PowerPoint PPT Presentation

Zhangs inequality for log-concave functions B. Gonz alez Merino* (joint with D. Alonso-Guti errez and J. Bernu es) Jena *Author partially funded by Fundaci on S eneca, proyect 19901/GERM/15, and by MICINN, project


  1. Zhang’s inequality for log-concave functions B. Gonz´ alez Merino* (joint with D. Alonso-Guti´ errez and J. Bernu´ es) Jena *Author partially funded by Fundaci´ on S´ eneca, proyect 19901/GERM/15, and by MICINN, project PGC2018-094215-B-I00, Spain. Departamento de An´ alisis Matem´ atico, Universidad de Sevilla Convex, Discrete and Integral Geometry, 19th September 2019.

  2. First definitions • If M ⊂ R n , let | M | be the volume (or n-Lebesgue measure) of M

  3. First definitions • If M ⊂ R n , let | M | be the volume (or n-Lebesgue measure) of M • Let B n 2 be the Euclidean unit ball

  4. First definitions • If M ⊂ R n , let | M | be the volume (or n-Lebesgue measure) of M • Let B n 2 be the Euclidean unit ball ,i.e., � � � x ∈ R n : | x | = B n x 2 1 + · · · + x 2 2 = n ≤ 1 .

  5. First definitions • If M ⊂ R n , let | M | be the volume (or n-Lebesgue measure) of M • Let B n 2 be the Euclidean unit ball ,i.e., � � � x ∈ R n : | x | = B n x 2 1 + · · · + x 2 2 = n ≤ 1 . • For any M ⊂ R n , then χ M is the characteristic of M � 1 if x ∈ M χ M : R n → { 0 , 1 } s. t. χ M ( x ) = 0 otherwise.

  6. Geometric & Analytic ineqs. Theorem 1 (Isoperimetric ineq. 1915) Let M ∈ C 1 and M compact. Then n − 1 1 n | B n n | M | 2 | ≤ S ( M ) . n ”=” iff M = B n 2 .

  7. Geometric & Analytic ineqs. Theorem 1 (Isoperimetric ineq. 1915) Let M ∈ C 1 and M compact. Then n − 1 1 n | B n n | M | 2 | ≤ S ( M ) . n ”=” iff M = B n 2 . Theorem 2 (Sobolev ineq. ’38) Let f : M → R with M ∈ C 1 compact and f ∈ C 1 . Then � n − 1 �� � n 1 n n | B n 2 | R n | f | ≤ R n |∇ f | n − 1 n ”=” iff f = χ B n 2 .

  8. Definitions and Properties • K is a convex body, i.e., a convex compact set of R n . Powered by TCPDF (www.tcpdf.org)

  9. Definitions and Properties • K is a convex body, i.e., a convex compact set of R n . Powered by TCPDF (www.tcpdf.org) • K n set of n-dimensional convex bodies.

  10. Definitions and Properties • If x ∈ R n , then x ⊥ is the hyperplane orthogonal to x .

  11. Definitions and Properties • If x ∈ R n , then x ⊥ is the hyperplane orthogonal to x . Moreover, if M ⊂ R n , then P x ⊥ M is the orthogonal projection of M onto x ⊥ .

  12. Definitions and Properties • If x ∈ R n , then x ⊥ is the hyperplane orthogonal to x . Moreover, if M ⊂ R n , then P x ⊥ M is the orthogonal projection of M onto x ⊥ . • The polar projection body Π ∗ ( K ) of K ∈ K n is the unit ball of the norm � x � Π ∗ ( K ) := | x || P x ⊥ K | .

  13. Definitions and Properties • If x ∈ R n , then x ⊥ is the hyperplane orthogonal to x . Moreover, if M ⊂ R n , then P x ⊥ M is the orthogonal projection of M onto x ⊥ . • The polar projection body Π ∗ ( K ) of K ∈ K n is the unit ball of the norm � x � Π ∗ ( K ) := | x || P x ⊥ K | . • The product | K | n − 1 | Π ∗ ( K ) | is an affine invariant.

  14. Petty projection inequality Theorem 3 (Petty 1971) Let K ∈ K n . Then � n +1 n � n 2 Γ | K | n − 1 | Π ∗ ( K ) | ≤ π 2 � n . � n +2 Γ 2 ”=” iff K is an ellipsoid.

  15. Petty projection inequality Theorem 3 (Petty 1971) Let K ∈ K n . Then � n +1 n � n 2 Γ | K | n − 1 | Π ∗ ( K ) | ≤ π 2 � n . � n +2 Γ 2 ”=” iff K is an ellipsoid. Petty projection ineq. ⇒ Isoperimetric ineq.

  16. Zhang’s inequality Theorem 4 (Zhang 1991) Let K ∈ K n . Then � 2 n � ≤ | K | n − 1 | Π ∗ ( K ) | . n n n ”=” iff K is an n-simplex.

  17. Polar projection body of f For every f ∈ W 1 , 1 = { f ∈ L 1 ( R n ) : ∂ x i ∈ L 1 ( R n ) , i = 1 , . . . , n } ∂ f with compact support, let Π ∗ ( f ), the polar projection body of f , be the unit ball of the norm � � x � Π ∗ ( f ) := R n |�∇ f ( y ) , x �| dy .

  18. Functional affine inequalities Theorem 5 (Zhang 1999) Let f ∈ C 1 with compact support. Then � n +1 1 2 Γ � n ≤ π 1 n − 1 | Π ∗ ( f ) | 2 � f � � . � n +2 n 2Γ 2 ”=” iff f = χ E with E an ellipsoid.

  19. Functional affine inequalities Theorem 5 (Zhang 1999) Let f ∈ C 1 with compact support. Then � n +1 1 2 Γ � n ≤ π 1 n − 1 | Π ∗ ( f ) | 2 � f � � . � n +2 n 2Γ 2 ”=” iff f = χ E with E an ellipsoid. Notice that � n +1 � 1 1 1 n π 2 Γ � �� ≤ n n S n − 1 �∇ u f � − n 2 � f � 1 du . � n +2 n � 2Γ n − 1 2

  20. Log-concave functions • f : R n → [0 , ∞ ) is log-concave if f ( x ) = e − u ( x ) for some u : R n → ( −∞ , ∞ ] convex,

  21. Log-concave functions • f : R n → [0 , ∞ ) is log-concave if f ( x ) = e − u ( x ) for some u : R n → ( −∞ , ∞ ] convex, i.e., if f ((1 − λ ) x + λ y ) ≥ f ( x ) 1 − λ f ( y ) λ for every x , y ∈ R n , λ ∈ [0 , 1].

  22. Log-concave functions • f : R n → [0 , ∞ ) is log-concave if f ( x ) = e − u ( x ) for some u : R n → ( −∞ , ∞ ] convex, i.e., if f ((1 − λ ) x + λ y ) ≥ f ( x ) 1 − λ f ( y ) λ for every x , y ∈ R n , λ ∈ [0 , 1]. • F ( R n ) log-concave integrable functions in R n .

  23. Log-concave functions • f : R n → [0 , ∞ ) is log-concave if f ( x ) = e − u ( x ) for some u : R n → ( −∞ , ∞ ] convex, i.e., if f ((1 − λ ) x + λ y ) ≥ f ( x ) 1 − λ f ( y ) λ for every x , y ∈ R n , λ ∈ [0 , 1]. • F ( R n ) log-concave integrable functions in R n . • If f ∈ F ( R n ) ∩ W 1 , 1 then � � x � Π ∗ ( f ) = 2 | x | x ⊥ P x ⊥ f ( y ) dy , where P x ⊥ f ( y ) = max s ∈ R f ( y + sx ).

  24. Functional affine inequalities Theorem 6 (Alonso-Guti´ errez, Bernu´ es, G.M. +2018) Let f ∈ F ( R n ). Then � � R n min { f ( y ) , f ( x ) } dydx ≤ 2 n n ! � f � n +1 | Π ∗ ( f ) | . 1 R n � f � ∞ = e −� x � △ for a simplex △ ∋ 0. f ( x ) ”=” iff

  25. Functional affine inequalities Theorem 6 (Alonso-Guti´ errez, Bernu´ es, G.M. +2018) Let f ∈ F ( R n ). Then � � R n min { f ( y ) , f ( x ) } dydx ≤ 2 n n ! � f � n +1 | Π ∗ ( f ) | . 1 R n � f � ∞ = e −� x � △ for a simplex △ ∋ 0. f ( x ) ”=” iff Remark If f ( x ) = e −� x � K with K ∈ K n then Thm. 6 becomes Thm. 4, i.e. � 2 n � ≤ | K | n − 1 | Π ∗ ( K ) | . n n n

  26. Proof of Theorem 6 Definition Let f ∈ F ( R n ). Then K t ( f ) := { x ∈ R n : f ( x ) ≥ e − t � f � ∞ } ∀ t ≥ 0 .

  27. Proof of Theorem 6 Definition Let f ∈ F ( R n ). Then K t ( f ) := { x ∈ R n : f ( x ) ≥ e − t � f � ∞ } ∀ t ≥ 0 . Lemma 1 Let f ∈ F ( R n ). The covariogram g : R n → R of f � ∞ e − t | K t ( f ) ∩ ( x + K t ( f )) | dt g ( x ) := 0 � f ( y ) � , f ( y − x ) � = R n min dy � f � ∞ � f � ∞ is even and g ∈ F ( R n ).

  28. Proof of Theorem 6 Lemma 2 Let f ∈ F ( R n ) and g its covariogram. For every 0 < λ 0 < 1 then K − log(1 − λ ) ( g ) � 2 � f � 1 Π ∗ ( f ) = . λ 0 <λ<λ 0

  29. Proof of Theorem 6 Proof. Since K − log(1 − λ ) ( g ) /λ rewrites as

  30. Proof of Theorem 6 Proof. Since K − log(1 − λ ) ( g ) /λ rewrites as � ∞ � ∞ � � x ∈ R n : e − t | K t ∩ ( λ x + K t ) | dt ≥ (1 − λ ) e − t | K t | dt = 0 0

  31. Proof of Theorem 6 Proof. Since K − log(1 − λ ) ( g ) /λ rewrites as � ∞ � ∞ � � x ∈ R n : e − t | K t ∩ ( λ x + K t ) | dt ≥ (1 − λ ) e − t | K t | dt = 0 0 � ∞ � ∞ e − t | K t | − | K t ∩ ( λ | x | x � � | x | + K t ) | x ∈ R n : e − t | K t | dt dt ≤ . λ 0 0

  32. Proof of Theorem 6 Proof. Since K − log(1 − λ ) ( g ) /λ rewrites as � ∞ � ∞ � � x ∈ R n : e − t | K t ∩ ( λ x + K t ) | dt ≥ (1 − λ ) e − t | K t | dt = 0 0 � ∞ � ∞ e − t | K t | − | K t ∩ ( λ | x | x � � | x | + K t ) | x ∈ R n : e − t | K t | dt dt ≤ . λ 0 0 Since | K t | − | K t ∩ ( λ | x | x | x | + K t ) | ≤ λ | x || P x ⊥ K t |

  33. Proof of Theorem 6 Proof. Since K − log(1 − λ ) ( g ) /λ rewrites as � ∞ � ∞ � � x ∈ R n : e − t | K t ∩ ( λ x + K t ) | dt ≥ (1 − λ ) e − t | K t | dt = 0 0 � ∞ � ∞ e − t | K t | − | K t ∩ ( λ | x | x � � | x | + K t ) | x ∈ R n : e − t | K t | dt dt ≤ . λ 0 0 Since | K t | − | K t ∩ ( λ | x | x | x | + K t ) | ≤ λ | x || P x ⊥ K t | λ x + K t λ | x | K t λ | x || P x ⊥ K t | | K t | − | K t ∩ ( λ x + K t ) |

  34. Proof of Theorem 6 � ∞ � ∞ e − t | K t | − | K t ∩ ( λ | x | x | x | + K t ) | e − t | P x ⊥ K t | dt dt ≤ | x | λ 0 0

  35. Proof of Theorem 6 � ∞ � ∞ e − t | K t | − | K t ∩ ( λ | x | x | x | + K t ) | e − t | P x ⊥ K t | dt dt ≤ | x | λ 0 0 = � x � Π ∗ ( f ) . 2 � f � ∞

  36. Proof of Theorem 6 � ∞ � ∞ e − t | K t | − | K t ∩ ( λ | x | x | x | + K t ) | e − t | P x ⊥ K t | dt dt ≤ | x | λ 0 0 = � x � Π ∗ ( f ) . 2 � f � ∞ Therefore if � ∞ � e − t | K t | dt = 2 � x � Π ∗ ( f ) ≤ 2 � f � ∞ R n f ( x ) dx 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend