weighted walks around dissected polygons conway coxeter
play

Weighted walks around dissected polygons Conway-Coxeter friezes and - PowerPoint PPT Presentation

Weighted walks around dissected polygons Conway-Coxeter friezes and beyond Christine Bessenrodt MIT, June 27, 2014 Weighted walks around dissected polygons Conway-Coxeter friezes and beyond Christine Bessenrodt 1 1 1 0 2 1 0 0


  1. Weighted walks around dissected polygons – Conway-Coxeter friezes and beyond Christine Bessenrodt MIT, June 27, 2014

  2. Weighted walks around dissected polygons – Conway-Coxeter friezes and beyond Christine Bessenrodt 1 1 1 0 2 1 0 0 4

  3. Weighted walks around dissected polygons – Conway-Coxeter friezes and beyond Christine Bessenrodt 1 1 1 0 2 1 0 0 4 7

  4. Weighted walks around dissected polygons – Conway-Coxeter friezes and beyond Christine Bessenrodt 1 2 1 2 2 1 0 4 2 1 0 0 7 2

  5. Weighted walks around dissected polygons – Conway-Coxeter friezes and beyond Christine Bessenrodt 1 2 1 2 2 1 0 4 2 1 0 0 7 2 70

  6. Weighted walks around dissected polygons – Conway-Coxeter friezes and beyond Christine Bessenrodt 1 2 1 2 2 1 0 4 2 1 0 0 7 2 Stanley@70 Happy Birthday, Richard!

  7. Arithmetical friezes Conway, Coxeter (1973) 0 0 0 0 0 0 0 0 . . . . . . . . . 1 1 1 1 1 1 1 1 1 . . . · · · · · · · · . . . . . . · · · · · · · · · . . . . . . · · · · · · · . . . b . . . · · · · · · · . . . a d . . . · · · · · · · . . . c . . . . . . · · · · · · · · · . . . · · · · · · · · . . . . . . . . . 1 1 1 1 1 1 1 1 1 . . . 0 0 0 0 0 0 0 0 . . . . . . a,b,c,d ∈ N , ad − bc = 1

  8. Conway-Coxeter friezes A frieze pattern of height 4: 1 1 1 1 1 1 1 1 1 . . . . . . . . . 1 3 1 2 2 1 3 1 2 . . . 2 2 1 3 1 2 2 1 3 . . . . . . . . . 1 1 1 1 1 1 1 1 1 . . .

  9. Conway-Coxeter friezes A frieze pattern of height 4: 1 1 1 1 1 1 1 1 1 . . . . . . . . . 1 3 1 2 2 1 3 1 2 . . . 2 2 1 3 1 2 2 1 3 . . . . . . . . . 1 1 1 1 1 1 1 1 1 . . . · · · · · ·

  10. Classification of friezes via triangulated polygons . . . 1 1 1 1 1 1 1 1 1 . . . 1 3 1 2 2 1 3 1 2 . . . . . . 2 2 1 3 1 2 2 1 3 . . . . . . 1 1 1 1 1 1 1 1 1 . . . . . .

  11. Classification of friezes via triangulated polygons 1 1 1 1 1 1 1 1 1 . . . . . . 1 3 1 2 2 1 3 1 2 . . . . . . . . . 2 2 1 3 1 2 2 1 3 . . . 1 1 1 1 1 1 1 1 1 . . . . . . �

  12. Classification of friezes via triangulated polygons 1 1 1 1 1 1 1 1 1 . . . . . . . . . 1 3 1 2 2 1 3 1 2 . . . 2 2 1 3 1 2 2 1 3 . . . . . . . . . 1 1 1 1 1 1 1 1 1 . . . � 1 3 2 1 2 Count number of triangles at each vertex!

  13. Arcs Broline, Crowe, Isaacs (1974) 1 α 2 5 β γ 3 4 An arc from vertex i to vertex j is a sequence of different triangles ( t i + 1 , t i + 2 , . . . , t j − 1 ) such that t k is incident to vertex k , for all k . arcs 1 2 3 4 5 from 1 to - ∅ ( α ) , ( β ) , ( γ ) ( α, γ ) , ( β, γ ) ( α, γ, β )

  14. Arcs Broline, Crowe, Isaacs (1974) 1 α 2 5 β γ 3 4 An arc from vertex i to vertex j is a sequence of different triangles such that t k is incident to vertex k , for all k . ( t i + 1 , t i + 2 , . . . , t j − 1 ) arcs 1 2 3 4 5 from 1 to - ∅ ( α ) , ( β ) , ( γ ) ( α, γ ) , ( β, γ ) ( α, γ, β ) count! 0 1 3 2 1

  15. Arc enumeration 1 α 2 5 β  0 1 3 2 1  γ 1 0 1 1 1   3 4   W = 3 1 0 1 2     2 1 1 0 1   1 1 2 1 0

  16. Arc enumeration – and back to the frieze 1 α 2 5 β   0 1 3 2 1 γ 1 0 1 1 1   3 4   W = 3 1 0 1 2     2 1 1 0 1   1 1 2 1 0 1 1 1 1 1 1 1 1 1 . . . . . . . . . 1 3 1 2 2 1 3 1 2 . . . 2 2 1 3 1 2 2 1 3 . . . . . . . . . 1 1 1 1 1 1 1 1 1 . . .

  17. Arc enumeration – and back to the frieze 1 α 2 5 β  0 1 3 2 1  γ 1 0 1 1 1   3 4   W = 3 1 0 1 2     2 1 1 0 1   1 1 2 1 0 1 1 1 1 1 1 1 1 1 . . . . . . . . . 1 3 1 2 2 1 3 1 2 . . . 2 2 1 3 1 2 2 1 3 . . . . . . 1 1 1 1 1 1 1 1 1 . . . . . .

  18. The arc enumeration matrix 1   0 1 3 2 1 α 1 0 1 1 1 2 5     W = 3 1 0 1 2 det W = 8     2 1 1 0 1 β   γ 1 1 2 1 0 3 4

  19. The arc enumeration matrix – the frieze table 1   0 1 3 2 1 α 1 0 1 1 1 2 5     W = 3 1 0 1 2 det W = 8     2 1 1 0 1 β   γ 1 1 2 1 0 3 4 Theorem (Broline, Crowe, Isaacs 1974) Let W be the arc enumeration matrix to a triangulated n -gon. (i) W is a symmetric matrix, with its upper/lower part equal to the fundamental domain of the frieze to the triangulation. (ii) det W = −(− 2 ) n − 2 .

  20. Renewed interest: recent generalizations and refinements Remarks 1 Frieze patterns in the context of cluster algebras of type A! Caldero, Chapoton; Propp; Assem, Dupont, Reutenauer, Schiffler, Smith; Baur, Marsh; Morier-Genoud, Ovsienko, Tabachnikov; Holm, Jørgensen, ...

  21. Renewed interest: recent generalizations and refinements Remarks 1 Frieze patterns in the context of cluster algebras of type A! Caldero, Chapoton; Propp; Assem, Dupont, Reutenauer, Schiffler, Smith; Baur, Marsh; Morier-Genoud, Ovsienko, Tabachnikov; Holm, Jørgensen, ... 2 Generalization to d -angulations and a refinement giving the Smith normal form of the corresponding “frieze table”. In this context, a generalized frieze pattern is associated to the d -angulation where the local 2 × 2 determinants are 0 or 1. (Joint work with Thorsten Holm and Peter Jørgensen, JCTA 2014.)

  22. Weighted arcs 1 α 2 5 β γ 3 4 arcs 1 2 3 4 5 from 1 to - ∅ ( α ) , ( β ) , ( γ ) ( α, γ ) , ( β, γ ) ( α, γ, β )

  23. Weighted arcs 1 α 2 5 β γ 3 4 arcs 1 2 3 4 5 from 1 to - ∅ ( α ) , ( β ) , ( γ ) ( α, γ ) , ( β, γ ) ( α, γ, β ) weights! 0 1 a+b+c ac+bc abc  0 1 a + b + c ac + bc  abc abc 0 1 c bc     0 1 W = ab + ac + bc abc b + c     a + b ab abc 0 1   1 a ab + ac abc 0

  24. Weighted arcs 1 α 2 5 β γ 3 4 arcs 1 2 3 4 5 from 1 to - ∅ ( α ) , ( β ) , ( γ ) ( α, γ ) , ( β, γ ) ( α, γ, β ) weights! 0 1 a+b+c ac+bc abc  0 1 a + b + c ac + bc  abc abc 0 1 c bc     0 1 W = ab + ac + bc abc b + c     a + b ab abc 0 1   1 a ab + ac abc 0 det W = a 5 b 5 c 5 + a 4 b 2 c 4 + a 4 b 4 c 2 + a 2 b 4 c 4 + abc 3 + ab 3 c + a 3 bc + 1

  25. Walks around dissected polygons 1 α 1 2 7 α 2 3 6 α 3 α 4 4 5 Let D = { α 1 , . . . , α m } be a dissection of a polygon, where the piece α k is a d k -gon, k = 1 , . . . , m .

  26. Walks around dissected polygons 1 α 1 2 7 α 2 3 6 α 3 α 4 4 5 Let D = { α 1 , . . . , α m } be a dissection of a polygon, where the piece α k is a d k -gon, k = 1 , . . . , m . A (counterclockwise) walk from vertex i to vertex j is a sequence of pieces s = ( p i + 1 , p i + 2 , . . . , p j − 1 ) such that (i) p k is incident to vertex k , and (ii) α r appears at most d r − 2 times in s , for any r .

  27. The weight matrix (without edge weights) Let D = { α 1 , . . . , α m } be a dissection of an n -gon. Weight of a piece α k : w ( α k ) = x k ∈ Z [ x 1 , . . . , x m ] = Z [ x ] . Weight of a walk s = ( p i + 1 , . . . , p j − 1 ) : j − 1 � x s = w ( p k ) ∈ Z [ x ] . k = i + 1 For vertices i and j we set � x s ∈ Z [ x ] . w i , j = s : walk from i to j Weight matrix associated to D : W D ( x ) = ( w i , j ) 1 ≤ i , j ≤ n .

  28. 1 2 α 7 β 3 6 γ δ 4 5 ab 2 cd  0 1 a + b ab + ac ( a + b )( b + c ) d ( a + b ) bcd  + b 2 + bc +( a + b ) bc ab 2 cd b 2 cd b + c b ( c + d ) + cd 0 1 bcd     ab 2 cd ( a + b ) bcd c + d 0 1 cd bcd     ab 2 cd ( a + b )( b + c ) d ab ( b + c ) d 0 1 d ( b + c ) d     ab 2 + abc ab 2 ( c + d ) ab 2 cd ab + ac + ad 0 1 b + c + d   + b 2 + bc + bd + abd    ab 2 ab 2 c ab 2 cd  a + b ab 0 1 ab ( b + c ) d + ab 2 c ab 2 cd 1 a ab ab ( b + c ) 0 The weight matrix W D is not symmetric!

  29. Complementary symmetry Let D be a polygon dissection with pieces of degree d 1 , . . . , d m . Define a complementing map φ D on weights by giving it on walk x s = � m i = 1 x s i weights (and linear extension): i � m x d i − 2 − s i φ D ( x s ) = . i i = 1 Theorem Let W D = ( w i , j ) be the weight matrix associated to D . Then w j , i = φ D ( w i , j ) for all i , j , i.e., W D is a complementary symmetric matrix.

  30. The determinant of the weight matrix 1 2 α 7 β 3 6 γ δ 4 5 det W D 1 + a 5 b 10 c 3 d 3 + a 2 b 8 c 2 d 2 + a 5 b 8 c 3 d 5 + a 2 b 6 c 2 d 4 = + a 6 b 12 c 4 d 6 + a 3 b 10 c 3 d 5 + a 4 b 6 c 2 d 2 + ab 2 c 3 d + a 5 b 8 c 5 d 3 + a 2 b 6 c 4 d 2 + a 6 b 12 c 6 d 4 + a 3 b 10 c 5 d 3 + a 5 b 6 c 5 d 5 + a 2 b 4 c 4 d 4 + a 6 b 10 c 6 d 6 + a 3 b 8 c 5 d 5 + a 4 b 12 c 6 d 6 + a 7 b 14 c 7 d 7 + a 4 b 4 c 4 d 2 + ab 4 cd + a 3 b 2 cd + a 4 b 4 c 2 d 4 + ab 2 cd 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend