updating the knowledge compilation map
play

Updating the Knowledge Compilation Map Simone Bova (TU Wien) - PowerPoint PPT Presentation

K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Updating the Knowledge Compilation Map Simone Bova (TU Wien) Dagstuhl Seminar on Recent Trends in Knowledge Compilation September 1722 , 2017, Dagstuhl (Germany) K NOWLEDGE C OMPILATION M AP U


  1. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Updating the Knowledge Compilation Map Simone Bova (TU Wien) Dagstuhl Seminar on Recent Trends in Knowledge Compilation September 17–22 , 2017, Dagstuhl (Germany)

  2. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Outline Knowledge Compilation Map Updates Extensions

  3. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Outline Knowledge Compilation Map Updates Extensions

  4. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Knowledge Compilation Represent knowledge so to facilitate reasoning. Example Represent DNFs by OBDDs to count models. x w ( x ∧ y ) ∨ ( x ∧ z ) ∨ ( w ∧ y ) ∨ ( w ∧ z ) ≡ y z ⊥ ⊤

  5. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Knowledge Compilation Represent knowledge so to facilitate reasoning. Example Represent DNFs by OBDDs to count models. x w ( x ∧ y ) ∨ ( x ∧ z ) ∨ ( w ∧ y ) ∨ ( w ∧ z ) ≡ y z ⊥ ⊤

  6. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Knowledge Compilation Represent knowledge so to facilitate reasoning. Example Represent DNFs by OBDDs to count models. x 9 = ( 6 + 12 ) / 2 w 6 = ( 0 + 12 ) / 2 ( x ∧ y ) ∨ ( x ∧ z ) ∨ ( w ∧ y ) ∨ ( w ∧ z ) ≡ y 12 = ( 8 + 16 ) / 2 z 8 = ( 0 + 16 ) / 2 ⊥ ⊤ 0 16

  7. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Knowledge Compilation Represent propositional knowledge so to facilitate reasoning. Find a class R of circuits expressing a class of Boolean functions � �� � Represent propositional knowledge . . . such that certain logical tasks on the circuits in R are computationally feasible. � �� � . . . so to facilitate reasoning.

  8. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Logical Tasks on Circuits Given circuits C and C ′ in a circuit class R . Counting: Count the models of C . Entailment: Decide if C entails C ′ . . . . . . . Negation: Find a circuit in R computing ¬ C . Conjunction: Find a circuit in R computing C ∧ C ′ . Disjunction: Find a circuit in R computing C ∨ C ′ . . . . . . . A task is computationally feasible on R if it is polytime tractable wrt the input size ie, wrt the size of the circuits in R .

  9. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Succinctness vs Tractability Tradeoff succinctness/tractability in choosing a representation language: Truthtables: Tractable , but useless because too verbose . Circuits: Succinct , but useless because too hard . Darwiche and Marquis (2002) systematically investigate a hierarchy of representation languages wrt their succinctness/tractability tradeoffs: A. Darwiche and P. Marquis. A Knowledge Compilation Map. J. Artif. Intell. Res. , 17, 229-264, 2002.

  10. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Representation Languages NNF DNNF CNF DNF dDNNF PI IP MODS FBDD OBDD Figure: Inclusions.

  11. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Representation Languages Negation Normal Forms ( NNF ) Boolean circuits having unbounded fanin AND and OR gates with negations pushed to the input gates. Decomposable NNFs ( DNNF ) NNFs where each AND gate has subcircuits using disjoint sets of variables. Deterministic DNNFs ( dDNNF ) DNNFs where each OR gate has pairwise inconsistent subcircuits. Prime Implicate Forms ( PI ) CNFs where entailed clauses are already entailed by a single clause in the CNF and no clause in the CNF is entailed by another. Models, MODS DNFs where each disjunct uses the same variables. Free Binary Decision Diagrams, FBDDs : Read-once branching programs.

  12. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Determinism and Decomposability ∨ ∧ ∧ ∧ x 1 x 4 ∨ ∨ ⊤ ∨ ∧ ∧ ∧ ∧ ∧ x 3 x 4 x 3 x 1 x 2 x 1 x 1 x 2 ⊥ ⊥

  13. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Counting via Determinism and Decomposability + × × × x 1 x 4 + + ⊤ + × × × × × x 3 x 4 x 3 x 1 x 2 x 1 x 1 x 2 ⊥ ⊥

  14. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Representation Languages Negation Normal Forms ( NNF ) Boolean circuits having unbounded fanin AND and OR gates with negations pushed to the input gates. Decomposable NNFs ( DNNF ) NNFs where each AND gate has subcircuits using disjoint sets of variables. Deterministic DNNFs ( dDNNF ) DNNFs where each OR gate has pairwise inconsistent subcircuits. Prime Implicate Forms ( PI ) CNFs where entailed clauses are already entailed by a single clause in the CNF and no clause in the CNF is entailed by another. Models, MODS DNFs where each disjunct uses the same variables. Free Binary Decision Diagrams, FBDDs : Deterministic read-once branching programs.

  15. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Succinctness Relation Let S , T ⊆ NNF. S is (polysize) compilable into T (or T is at least as succinct as S) if there exists a polynomial p : N → N such that for all C ∈ S there exists D ∈ T equivalent to C such that size ( D ) ≤ p ( size ( C )) . Write S � T if S is compilable into T, and S � � T otherwise.

  16. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Knowledge Compilation in Practice Want to count models of circuit C (offline) modulo a sequence of partial assignments g 1 , g 2 , g 3 , . . . (online): C | g 1 , C | g 2 , C | g 3 , . . . Ow, lookup in the KC map a maximally succinct language supporting counting mod assignments. Represent C by a form C ∗ in the chosen language: C ∗ , C ∗ | g 1 , C ∗ | g 2 , C ∗ | g 3 , . . . High compilation cost is eventually amortized by low querying costs: t 0 t 1 · · · t j · · · · · · · · · t i · · · t i + 1 · · · C | g 1 · · · C | g j · · · · · · · · · C | g i · · · C | g i + 1 C ∗ C ∗ | g 1 C ∗ | g 2 C ∗ | g i C ∗ | g i + 1 C ∗ | g i + 2 · · · · · · · · · · · ·

  17. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Outline Knowledge Compilation Map Updates Extensions

  18. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Succinctness Relation Darwiche and Marquis (2002) summarize the status of the succinctness relation also appealing to previous work including • Quine (1959), • Chandra and Markowsky (1978), • Bryant (1986), • Wegener (1987), • Gergov and Meinel (1994), • Gogic, Kautz, Papadimitriou, and Selman (1995), • Selman and Kautz (1996), • Cadoli and Donini (1997), and • Darwiche (1999).

  19. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Succinctness Relation NNF DNNF Let S and T be languages in the diagram. DNF dDNNF CNF If ( S , T ) in transitive closure of → , then S � T. Else: IP FBDD PI ? • If S ��� T, then S � T (unknown). • Else S � � T. OBDD MODS

  20. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Succinctness Relation NNF NNF DNNF DNNF DNF dDNNF CNF DNF dDNNF CNF IP FBDD PI IP FBDD PI OBDD OBDD MODS MODS Figure: S ��� T means S � T unknown. S �→ T means S � � T unless PH collapses.

  21. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Succinctness Relation | 2002–2016 NNF DNNF Let S and T be languages in the diagram. DNF dDNNF CNF If ( S , T ) in transitive closure of → , then S � T. Else: IP FBDD PI ? • If S ��� T, then S � T. • If S �→ T, then S � � T unless PH collapses. • Else S � � T. OBDD MODS

  22. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Succinctness | Updates | 1 | PI � � DNNF NNF NNF DNNF DNNF DNF dDNNF CNF DNF dDNNF CNF IP FBDD PI IP FBDD PI OBDD OBDD MODS MODS Figure: S �→ T means S � � T.

  23. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Succinctness | Updates | 2 | DNNF � � dDNNF NNF NNF DNNF DNNF DNF dDNNF CNF DNF dDNNF CNF IP FBDD PI IP FBDD PI OBDD OBDD MODS MODS Figure: S �→ T means S � � T.

  24. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Succinctness | Updates NNF NNF DNNF DNNF DNF dDNNF CNF DNF dDNNF CNF IP FBDD PI IP FBDD PI OBDD OBDD MODS MODS

  25. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Knowledge Compilation Meets Communication Complexity Theorem (B, Capelli, Mengel, and Slivovsky) Let D be a DNNF (resp, dDNNF) computing a function F. The size of D is an upper bound on the size of a smallest rectangle cover (resp, disjoint rectange cover) of F. ∗ A Z -rectangle is a function R ( Z ) of the form R ≡ S ( X ) ∧ T ( Y ) for functions S and T with X and Y forming a partition of Z . { R i } i ∈ I is a rectangle cover of a Boolean function F ( Z ) if each R i is a Z -rectangle and F ≡ � i ∈ I R i . A rectangle cover { R i } i ∈ I is disjoint if R i ∧ R j ≡ ⊥ ( i � = j ∈ I ). ∗ Balanced.

  26. K NOWLEDGE C OMPILATION M AP U PDATES E XTENSIONS Rectangle | R ( x , y , z , w ) ≡ S ( x , y ) ∧ × T ( z , w ) R ( x , y , z , w ) ¯ x ¯ y ¯ z ¯ w 0 ¯ x ¯ y ¯ zw 0 ¯ x ¯ yz ¯ w 0 ¯ x ¯ yzw 0 ¯ xy ¯ z ¯ w 0 ¯ xy ¯ z ¯ ¯ ¯ z ¯ zw 1 w zw w zw ¯ xyz ¯ x ¯ ¯ w 1 y 0 0 0 0 ¯ xyzw 0 ≡ xy ¯ 0 0 1 1 x ¯ y ¯ z ¯ x ¯ w 0 y 0 1 1 0 x ¯ y ¯ zw xy 0 0 0 0 1 x ¯ yz ¯ w 1 x ¯ yzw 0 xy ¯ z ¯ w 0 xy ¯ zw 0 xyz ¯ w 0 xyzw 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend