uniqueness
play

Uniqueness Christian Fleischhack Universit at Paderborn Institut - PowerPoint PPT Presentation

Uniqueness Christian Fleischhack Universit at Paderborn Institut f ur Mathematik Jurekfest, Warszawa, September 2019 1 Canonical Quantization Strategy Given: classical system with first-class constraints 1. Elementary Variables


  1. Uniqueness Christian Fleischhack Universit¨ at Paderborn Institut f¨ ur Mathematik Jurekfest, Warszawa, September 2019

  2. 1 Canonical Quantization Strategy • Given: classical system with first-class constraints 1. Elementary Variables • choose separating space S of phase space functions 2. Quantization • choose “representation” of S on some kinematical Hilbert space H , giving self-adjoint constraints 3. Group Averaging • choose constraint-invariant dense subset Φ in Hilbert space H • solve constraints using Gelfand triple Φ ⊆ H ⊆ Φ ′ � d µ ( Z ) Zφ ∈ Φ ′ η ( φ ) := Z 4. Physical Hilbert Space • inner product: � ηφ 1 , ηφ 2 � phys := ( ηφ 1 )[ φ 2 ] • completion of η (Φ) gives physical Hilbert space, self-adjoint dual representation of observable algebra Ashtekar, Lewandowski, Marolf, Mour˜ ao, Thiemann 1995

  3. 1 Canonical Quantization Strategy • Given: classical system with first-class constraints 1. Elementary Variables • choose separating space S of phase space functions 2. Quantization • choose “representation” of S on some kinematical Hilbert space H , giving self-adjoint constraints 3. Group Averaging • choose constraint-invariant dense subset Φ in Hilbert space H • solve constraints using Gelfand triple Φ ⊆ H ⊆ Φ ′ � d µ ( Z ) Zφ ∈ Φ ′ η ( φ ) := Z 4. Physical Hilbert Space • inner product: � ηφ 1 , ηφ 2 � phys := ( ηφ 1 )[ φ 2 ] • completion of η (Φ) gives physical Hilbert space, self-adjoint dual representation of observable algebra thieMann, mourAo, marolF, lewandowskI, ashtekAr 1995

  4. 1 Canonical Quantization Strategy • Given: classical system with first-class constraints 1. Elementary Variables • choose separating space S of phase space functions 2. Quantization • choose “representation” of S on some kinematical Hilbert space H , giving self-adjoint constraints

  5. 1 Canonical Quantization Strategy • Given: classical system 1. Elementary Variables • choose separating space S of phase space functions

  6. b b 2 Basics Gravity • Given: Ashtekar gravity ( A, E ) 1. Elementary Variables • choose separating space S of phase space functions � γ A • Basic functions h γ ( A ) := P e � := [ ∗ E ]( f ) E S,f S • Cylindrical functions ( γ 1 , . . . , γ n ) γ 1 γ 2 γ 3 γ 4 ψ := ψ γ ◦ π γ → G n h γ 1 × · · · × h γn : A − smooth • Derivations on Cyl := { ψ, E S,f } X S,f ψ • Diffeos act via γ , S , f , e.g.: α Ψ ( f ◦ h γ ) := f ◦ h Ψ( γ )

  7. 3 Holonomy-Flux Algebra LOST Theorem • Holonomy-Flux Algebra ∗ -algebra of all words in Cyl and X factorized by the relations H . . . a · X − X · a = i { a, X } (CCR, a ∈ Cyl ∪ X ) + linearity ψ · ψ ′ ψ ψ ′ = ( Cyl -module) • Standard Invariant State ω 0 ω 0 ( a · X ) = 0 ( a ∈ H , X ∈ X ) � ω 0 ( ψ ) = G n ψ γ d µ Haar ( ψ = ψ γ ◦ π γ ∈ Cyl ) Theorem: Lewandowski, Oko� l´ ow, Sahlmann, Thiemann 2005 Assume • dim M ≥ 2 • hypersurfaces – semianalytic • diffeos – semianalytic • smearings with compact support Then ω 0 is the unique state on H that is invariant w.r.t. bundle automorphisms.

  8. b b 4 Basics Gravity • Given: Ashtekar gravity ( A, E ) 1. Elementary Variables • choose separating space S of phase space functions � γ A • Basic functions h γ ( A ) := P e � := [ ∗ E ]( f ) E S,f S • Cylindrical functions ( γ 1 , . . . , γ n ) γ 1 γ 2 γ 3 γ 4 ψ := ψ γ ◦ π γ → G n h γ 1 × · · · × h γn : A − smooth • Derivations on Cyl := { ψ, E S,f } X S,f ψ • Diffeos act via γ , S , f , e.g.: α Ψ ( f ◦ h γ ) := f ◦ h Ψ( γ )

  9. b b 4 Basics Cosmology • Given: Ashtekar gravity ( A, E ) + homogeneity + isotropy 1. Elementary Variables • choose separating space S of phase space functions restricted � γ A • Basic functions h γ ( A ) := P e � := [ ∗ E ]( f ) E S,f S • Cylindrical functions ( γ 1 , . . . , γ n ) γ 1 γ 2 γ 3 γ 4 ψ := ψ γ ◦ π γ → G n h γ 1 × · · · × h γn : A − smooth • Derivations on Cyl := { ψ, E S,f } X S,f ψ • Diffeos act via γ , S , f , e.g.: α Ψ ( f ◦ h γ ) := f ◦ h Ψ( γ )

  10. b b 4 Basics Cosmology • Given: Ashtekar gravity ( A, E ) + homogeneity + isotropy 1. Elementary Variables • choose separating space S of phase space functions restricted � γ A • Basic functions h γ ( A ) := P e � not smeared := [ ∗ E ]( f ) E S,f S • Cylindrical functions ( γ 1 , . . . , γ n ) γ 1 γ 2 γ 3 γ 4 ψ := ψ γ ◦ π γ → G n h γ 1 × · · · × h γn : A − smooth • Derivations on Cyl := { ψ, E S,f } X S,f ψ • Diffeos act via γ , S , f , e.g.: α Ψ ( f ◦ h γ ) := f ◦ h Ψ( γ )

  11. b b 4 Basics Cosmology • Given: Ashtekar gravity ( A, E ) + homogeneity + isotropy 1. Elementary Variables • choose separating space S of phase space functions restricted � γ A • Basic functions h γ ( A ) := P e � not smeared := [ ∗ E ]( f ) E S,f S • Cylindrical functions ( γ 1 , . . . , γ n ) γ 1 γ 2 γ 3 γ 4 dense in A := C 0 ( R ) ⊕ C AP ( R ) restricted to R ψ := ψ γ ◦ π γ → G n h γ 1 × · · · × h γn : A − smooth • Derivations on Cyl := { ψ, E S,f } X S,f ψ • Diffeos act via γ , S , f , e.g.: α Ψ ( f ◦ h γ ) := f ◦ h Ψ( γ )

  12. b b 4 Basics Cosmology • Given: Ashtekar gravity ( A, E ) + homogeneity + isotropy 1. Elementary Variables • choose separating space S of phase space functions restricted � γ A • Basic functions h γ ( A ) := P e � not smeared := [ ∗ E ]( f ) E S,f S • Cylindrical functions ( γ 1 , . . . , γ n ) γ 1 γ 2 γ 3 γ 4 dense in A := C 0 ( R ) ⊕ C AP ( R ) restricted to R ψ := ψ γ ◦ π γ → G n h γ 1 × · · · × h γn : A − smooth d • Derivations on Cyl := { ψ, E S,f } X S,f ψ = t d X • Diffeos act via γ , S , f , e.g.: α Ψ ( f ◦ h γ ) := f ◦ h Ψ( γ )

  13. b b 4 Basics Cosmology • Given: Ashtekar gravity ( A, E ) + homogeneity + isotropy 1. Elementary Variables • choose separating space S of phase space functions restricted � γ A • Basic functions h γ ( A ) := P e � not smeared := [ ∗ E ]( f ) E S,f S • Cylindrical functions ( γ 1 , . . . , γ n ) γ 1 γ 2 γ 3 γ 4 dense in A := C 0 ( R ) ⊕ C AP ( R ) restricted to R ψ := ψ γ ◦ π γ → G n h γ 1 × · · · × h γn : A − smooth d • Derivations on Cyl := { ψ, E S,f } X S,f ψ = t d X residual dilations • Diffeos act via γ , S , f , e.g.: α Ψ ( f ◦ h γ ) := f ◦ h Ψ( γ )

  14. b b 4 Basics Cosmology • Given: Ashtekar gravity ( A, E ) + homogeneity + isotropy 1. Elementary Variables • choose separating space S of phase space functions restricted � γ A • Basic functions h γ ( A ) := P e � not smeared := [ ∗ E ]( f ) E S,f S • Cylindrical functions ( γ 1 , . . . , γ n ) γ 1 γ 2 γ 3 γ 4 dense in A := C 0 ( R ) ⊕ C AP ( R ) restricted to R ψ := ψ γ ◦ π γ → G n h γ 1 × · · · × h γn : A − smooth d • Derivations on Cyl := { ψ, E S,f } X S,f ψ = t d X residual dilations X λ • Diffeos act via γ , S , f , e.g.: α Ψ ( f ◦ h γ ) := f ◦ h Ψ( γ ) = ) X ( α λ

  15. 5 Cosmological Holonomy-Flux Algebra LOST Theorem • Holonomy-Flux Algebra ∗ -algebra of all words in Cyl and X factorized by the relations H . . . a · X − X · a = i { a, X } (CCR, a ∈ Cyl ∪ X ) + linearity ψ · ψ ′ ψ ψ ′ = ( Cyl -module) • Standard Invariant State ω 0 ω 0 ( a · X ) = 0 ( a ∈ H , X ∈ X ) � ω 0 ( ψ ) = G n ψ γ d µ Haar ( ψ = ψ γ ◦ π γ ∈ Cyl ) Theorem: Lewandowski, Oko� l´ ow, Sahlmann, Thiemann 2005 Assume • dim M ≥ 2 • hypersurfaces – semianalytic • diffeos – semianalytic • smearings with compact support Then ω 0 is the unique state on H that is invariant w.r.t. bundle automorphisms.

  16. 5 Cosmological Holonomy-Flux Algebra THE Theorem • Restricted Holonomy-Flux Algebra ∗ -algebra of all words in B and X factorized by the relations H C . . . a · X − X · a = i { a, X } (CCR, a ∈ Cyl ∪ X ) + linearity ψ · ψ ′ ψ ψ ′ = ( B -module) • Standard Invariant State ω 0 ω 0 ( a · X ) = 0 ( a ∈ H C , X ∈ X ) � ω 0 ( ψ 0 + ψ AP ) = R Bohr ψ AP d µ Bohr Theorem: Thiemann, Hanusch, Engle 2016; Fleischhack 2018 Assume • A := C 0 ( R ) ⊕ C AP ( R ) • B := { ψ ∈ A | ψ ( n ) ∈ A ∀ n } • hypersurfaces – semianalytic • smearings with compact support Then ω 0 is the unique state on H C that is invariant w.r.t. dilations.

  17. 5 Cosmological Holonomy-Flux Algebra THE Theorem • Restricted Holonomy-Flux Algebra ∗ -algebra of all words in B and X factorized by the relations H C . . . a · X − X · a = i { a, X } (CCR, a ∈ Cyl ∪ X ) + linearity ψ · ψ ′ ψ ψ ′ = ( B -module) • Standard Invariant State ω 0 ω 0 ( a · X ) = 0 ( a ∈ H C , X ∈ X ) � ω 0 ( ψ 0 + ψ AP ) = R Bohr ψ AP d µ Bohr Theorem: Thiemann, Hanusch, Engle 2016; Fleischhack 2018 Assume • A := C 0 ( R ) ⊕ C AP ( R ) • B := { ψ ∈ A | ψ ( n ) ∈ A ∀ n } • hypersurfaces – semianalytic • smearings with compact support Then ω 0 is the unique state on H C that is invariant w.r.t. dilations. Holds also for A := C AP ( R ) Remark

  18. 6 Conclusions Jurek has found, created, inspired strong unique ness results.

  19. 6 Conclusions Jurek has found, created, inspired strong unique ness results. Jurek is unique . Theorem:

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend