unique normal forms in infinitary weakly orthogonal term
play

Unique Normal Forms in Infinitary Weakly Orthogonal Term Rewriting - PowerPoint PPT Presentation

Counterexample in Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Unique Normal Forms in Infinitary Weakly Orthogonal Term Rewriting Jrg Endrullis Clemens


  1. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Unique Normal Forms in Infinitary Weakly Orthogonal Term Rewriting Jörg Endrullis ⋆ Clemens Grabmayer △ Dimitri Hendriks ⋆ Jan Willem Klop ⋆ Vincent van Oostrom △ △ ) Universiteit Utrecht ⋆ ) Vrije Universiteit Amsterdam RTA 2010, Edinburgh, UK July 11–13, 2010 UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  2. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Weakly orthogonal vs. orthogonal Weakly orthogonal (first-/higher-order) rewrite systems: ◮ definition: ‘harmless’ weakening of orthogonality ◮ for finitary TRSs: most ‘nice’ properties of orthogonal systems are preserved ◮ but: new concepts, and non-trivial adaptations are needed In this paper we: ◮ investigate infinitary weakly orthogonal rewrite systems ◮ show that uniqueness of infinitary normal forms fails in contrast to orthogonal systems ◮ explain how this failure can be repaired UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  3. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Weakly orthogonal vs. orthogonal Weakly orthogonal (first-/higher-order) rewrite systems: ◮ definition: ‘harmless’ weakening of orthogonality ◮ for finitary TRSs: most ‘nice’ properties of orthogonal systems are preserved ◮ but: new concepts, and non-trivial adaptations are needed In this paper we: ◮ investigate infinitary weakly orthogonal rewrite systems ◮ show that uniqueness of infinitary normal forms fails in contrast to orthogonal systems ◮ explain how this failure can be repaired UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  4. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Overview ◮ Definitions: weakly orthogonal, UN ∞ ◮ Counterexample to UN ∞ for weakly orthogonal TRSs ◮ Counterexample to UN ∞ for λ ∞ βη ◮ Restoring infinitary confluence ◮ Diamond and triangle properties for developments UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  5. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Weakly orthogonal Weakly orthogonal (first-/higher-order) systems: ◮ left-linear ◮ all critical pairs are trivial. Examples. ◮ Successor/Predecessor TRS: P ( S ( x )) → x S ( P ( x )) → x with critical pairs: S ( x ) ← S ( P ( S ( x ))) → S ( x ) P ( x ) ← P ( S ( P ( x ))) → P ( x ) ◮ Parallel-Or TRS (‘almost orthogonal’): por ( true , x ) → true por ( x , true ) → true por ( false , false ) → false UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  6. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Weakly orthogonal Weakly orthogonal (first-/higher-order) systems: ◮ left-linear ◮ all critical pairs are trivial. Examples. ◮ Successor/Predecessor TRS: P ( S ( x )) → x S ( P ( x )) → x with critical pairs: S ( x ) ← S ( P ( S ( x ))) → S ( x ) P ( x ) ← P ( S ( P ( x ))) → P ( x ) ◮ Parallel-Or TRS (‘almost orthogonal’): por ( true , x ) → true por ( x , true ) → true por ( false , false ) → false UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  7. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Weakly orthogonal Weakly orthogonal (first-/higher-order) systems: ◮ left-linear ◮ all critical pairs are trivial. Examples. ◮ Successor/Predecessor TRS: P ( S ( x )) → x S ( P ( x )) → x with critical pairs: S ( x ) ← S ( P ( S ( x ))) → S ( x ) P ( x ) ← P ( S ( P ( x ))) → P ( x ) ◮ Parallel-Or TRS (‘almost orthogonal’): por ( true , x ) → true por ( x , true ) → true por ( false , false ) → false UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  8. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Weakly orthogonal Weakly orthogonal (first-/higher-order) systems: ◮ left-linear ◮ all critical pairs are trivial. Examples. ◮ Successor/Predecessor TRS: P ( S ( x )) → x S ( P ( x )) → x with critical pairs: S ( x ) ← S ( P ( S ( x ))) → S ( x ) P ( x ) ← P ( S ( P ( x ))) → P ( x ) ◮ Parallel-Or TRS (‘almost orthogonal’): por ( true , x ) → true por ( x , true ) → true por ( false , false ) → false UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  9. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Weakly orthogonal Weakly orthogonal (first-/higher-order) systems: ◮ left-linear ◮ all critical pairs are trivial. Examples. ◮ Successor/Predecessor TRS: P ( S ( x )) → x S ( P ( x )) → x with critical pairs: S ( x ) ← S ( P ( S ( x ))) → S ( x ) P ( x ) ← P ( S ( P ( x ))) → P ( x ) ◮ Parallel-Or TRS (‘almost orthogonal’): por ( true , x ) → true por ( x , true ) → true por ( false , false ) → false UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  10. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Weakly orthogonal Weakly orthogonal (first-/higher-order) systems: ◮ left-linear ◮ all critical pairs are trivial. Examples. ◮ Successor/Predecessor TRS: P ( S ( x )) → x S ( P ( x )) → x with critical pairs: S ( x ) ← S ( P ( S ( x ))) → S ( x ) P ( x ) ← P ( S ( P ( x ))) → P ( x ) ◮ Parallel-Or TRS (‘almost orthogonal’): por ( true , x ) → true por ( x , true ) → true por ( false , false ) → false UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  11. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary Weakly orthogonal Weakly orthogonal (first-/higher-order) systems: ◮ left-linear ◮ all critical pairs are trivial. Examples. ◮ Successor/Predecessor TRS: P ( S ( x )) → x S ( P ( x )) → x with critical pairs: S ( x ) ← S ( P ( S ( x ))) → S ( x ) P ( x ) ← P ( S ( P ( x ))) → P ( x ) ◮ Parallel-Or TRS (‘almost orthogonal’): por ( true , x ) → true por ( x , true ) → true por ( false , false ) → false UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  12. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary CR ∞ en UN ∞ (definitions). Situation in OTRSs ◮ CR ∞ : t 1 և և t ։ ։ t 2 = ⇒ ∃ s . t 1 ։ ։ s և և t 2 ◮ UN ∞ : ։ t 2 ∧ t 1 , t 2 normal forms = ⇒ t 1 = t 2 t 1 և և t ։ ◮ SN ∞ : all infinite rewrite sequences are progressive (str. conv.) In orthogonal TRSs (well-known): ◮ SN ∞ = ⇒ CR ∞ , and CR ∞ = ⇒ UN ∞ . ◮ CR ∞ fails (Kennaway). ◮ But for non-collapsing TRSs: CR ∞ holds. ◮ UN ∞ holds (Kennaway/Klop). UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  13. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary CR ∞ en UN ∞ (definitions). Situation in OTRSs ◮ CR ∞ : t 1 և և t ։ ։ t 2 = ⇒ ∃ s . t 1 ։ ։ s և և t 2 ◮ UN ∞ : ։ t 2 ∧ t 1 , t 2 normal forms = ⇒ t 1 = t 2 t 1 և և t ։ ◮ SN ∞ : all infinite rewrite sequences are progressive (str. conv.) In orthogonal TRSs (well-known): ◮ SN ∞ = ⇒ CR ∞ , and CR ∞ = ⇒ UN ∞ . ◮ CR ∞ fails (Kennaway). ◮ But for non-collapsing TRSs: CR ∞ holds. ◮ UN ∞ holds (Kennaway/Klop). UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

  14. Counterexample in λ ∞ βη Introduction Counterexample in w-o iTRSs Restoring infinitary confluence Diamond and triangle properties Summary CR ∞ en UN ∞ (definitions). Situation in OTRSs ◮ CR ∞ : t 1 և և t ։ ։ t 2 = ⇒ ∃ s . t 1 ։ ։ s և և t 2 ◮ UN ∞ : ։ t 2 ∧ t 1 , t 2 normal forms = ⇒ t 1 = t 2 t 1 և և t ։ ◮ SN ∞ : all infinite rewrite sequences are progressive (str. conv.) In orthogonal TRSs (well-known): ◮ SN ∞ = ⇒ CR ∞ , and CR ∞ = ⇒ UN ∞ . ◮ CR ∞ fails (Kennaway). ◮ But for non-collapsing TRSs: CR ∞ holds. ◮ UN ∞ holds (Kennaway/Klop). UN ∞ in weakly-orthogonal iTRSs Endrullis, Grabmayer, Hendriks, Klop, van Oostrom

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend