une approche stochastique la mod lisation de l immunoth
play

Une approche stochastique la modlisation de limmunothrapie contre - PowerPoint PPT Presentation

Une approche stochastique la modlisation de limmunothrapie contre le cancer Loren Coquille - Travail en collaboration avec Martina Baar, Anton Bovier, Hannah Mayer (IAM Bonn) Michael Hlzel, Meri Rogava, Thomas Tting (UniKlinik


  1. Une approche stochastique à la modélisation de l’immunothérapie contre le cancer Loren Coquille - Travail en collaboration avec Martina Baar, Anton Bovier, Hannah Mayer (IAM Bonn) Michael Hölzel, Meri Rogava, Thomas Tüting (UniKlinik Bonn) Institut Fourier – Grenoble Séminaire commun IF/LJK - 17 septembre 2015 Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 1 / 45

  2. Plan Biological motivations 1 Adaptative dynamics 2 The model State of the art Only switches : Relapse caused by stochastic fluctuations 3 Therapy with 1 type of T-cell Biological parameters Therapy with 2 types of T-cells Only mutations : Early mutation induced by the therapy 4 Mutations and switches : Polymorphic Evolution Sequence 5 Conclusion 6 Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 2 / 45

  3. Biological motivations Plan Biological motivations 1 Adaptative dynamics 2 The model State of the art Only switches : Relapse caused by stochastic fluctuations 3 Therapy with 1 type of T-cell Biological parameters Therapy with 2 types of T-cells Only mutations : Early mutation induced by the therapy 4 Mutations and switches : Polymorphic Evolution Sequence 5 Conclusion 6 Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 3 / 45

  4. Biological motivations Experiment on melanoma (UniKlinik Bonn) Injection of T-cells able to kill a specific type of melanoma. The treatment induces an inflammation , to which the melanoma react by changing their phenotype (markers disappear on their surface, " switch "). The T-cells cannot kill them any more, the tumor continues to grow. Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 4 / 45

  5. Biological motivations Without therapy : exponential growth of the tumor. With therapy : relapse after 140 days. With therapy and restimulation : late relapse. Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 5 / 45

  6. Adaptative dynamics Plan Biological motivations 1 Adaptative dynamics 2 The model State of the art Only switches : Relapse caused by stochastic fluctuations 3 Therapy with 1 type of T-cell Biological parameters Therapy with 2 types of T-cells Only mutations : Early mutation induced by the therapy 4 Mutations and switches : Polymorphic Evolution Sequence 5 Conclusion 6 Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 6 / 45

  7. Adaptative dynamics The model Individual-based model Cancer cells (melanoma): each cell is characterized by a genotype and a phenotype. Each can reproduce, die, mutate (reproduction with genotypic change) or switch (phenotypic change, without reproduction) at prescribed rates. Immune cells (T-cells): Each cell can reproduce, die, or kill a cancer cell of prescribed type (which produces a chemical messenger) at prescribed rates. Chemical messenger (TNF − α ): Each particle can die at a prescribed rate. Its presence influences the ability of a fixed type of cancer cell to switch. Trait space and measure : X = G × P ⊔ Z ⊔ W = { g 1 , . . . , g |G| } × { p 1 , . . . , p |P| } ⊔ { z 1 , . . . , z |Z| } ⊔ w n = ( n ( g 1 , p 1 ) , . . . , n ( g |G| , p |P| ) , n z 1 , . . . , n z |Z| , n w ) Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 7 / 45

  8. Adaptative dynamics The model Example for 2 types of melanoma and 1 type of T-cell The stochastic model converges, in the limit of large populations, towards the solution this dynamical system with logistic , predator-prey , switch :  � � ˙ = n x b x − d x − c xx · n x − c xy · n y + s · n y − s w · n w n x − t xz · n z x n x n x     � �  ˙ = n y b y − d y − c yy · n y − c yx · n x − s · n y + s w · n w n x  n y ˙ = − d zx · n z x + b zx · n z x n x  n z x     ˙ = − d w · n w + ℓ x · t xz · n x n z x  n w Event Rates for x Rates for y for z for w (Re)production b x b y b zx n x Natural death d x + c xx n x + c xy n y d y + c yy n x + c yx n y d zx d w Therapy death t xz n z x 0 Switch s w n w s Deterministically, a number ℓ w of TNF- α particles are produced when z x kills x . Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 8 / 45

  9. Adaptative dynamics State of the art State of the art for the BPDL model In general X continuous. Measure ν t = � N t i = 1 δ x i . Markov process on the space of positive measures. Event Rate Clonal reproduction ( 1 − p ( x )) · b ( x ) Reproduction with mutation m ( x , dy ) · p ( x ) · b ( x ) � Death d ( x ) + X c ( x , y ) ν ( dy ) Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 9 / 45

  10. Adaptative dynamics State of the art State of the art for the BPDL model In general X continuous. Measure ν t = 1 � N t i = 1 δ x i . K Markov process on the space of positive measures. Event Rate Clonal reproduction ( 1 − µ p ( x )) · b ( x ) Reproduction with mutation m ( x , dy ) · µ p ( x ) · b ( x ) c ( x , y ) � Death d ( x ) + ν ( dy ) X K Limit of large populations and rare mutations K → ∞ µ → 0 Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 9 / 45

  11. Adaptative dynamics State of the art Scalings and time scales K → ∞ , µ fixed, T < ∞ : Law of large numbers, deterministic limit [ Fournier, Méléard, 2004 ] K → ∞ , µ → 0, T < ∞ : Law of large numbers, deterministic limit without mutations. K → ∞ , µ → 0, T ∼ log ( 1 /µ ) : Deterministic jump process [ Bovier, Wang, 2012 ] 1 1 ( K , µ ) → ( ∞ , 0 ) t.q. µ K ≫ log K , T ∼ µ K : Random jump process [ Champagnat, Méléard, 2009 , 2010 ] Trait Substitution Sequence Polymorphic Evolution Sequence Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 10 / 45

  12. Adaptative dynamics State of the art Scalings and time scales K → ∞ , µ fixed, T < ∞ : Law of large numbers, deterministic limit [ Fournier, Méléard, 2004 ] limit dynamical systems (with switch) are not classified K → ∞ , µ → 0, T < ∞ : Law of large numbers, deterministic limit without mutations. K → ∞ , µ → 0, T ∼ log ( 1 /µ ) : Deterministic jump process [ Bovier, Wang, 2012 ] 1 1 ( K , µ ) → ( ∞ , 0 ) t.q. µ K ≫ log K , T ∼ µ K : Random jump process [ Champagnat, Méléard, 2009 , 2010 ] Trait Substitution Sequence Polymorphic Evolution Sequence Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 10 / 45

  13. Only switches : Relapse caused by stochastic fluctuations Plan Biological motivations 1 Adaptative dynamics 2 The model State of the art Only switches : Relapse caused by stochastic fluctuations 3 Therapy with 1 type of T-cell Biological parameters Therapy with 2 types of T-cells Only mutations : Early mutation induced by the therapy 4 Mutations and switches : Polymorphic Evolution Sequence 5 Conclusion 6 Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 11 / 45

  14. Only switches : Relapse caused by stochastic fluctuations Therapy with 1 type of T-cell Solution of the determinisitic system Legend : Melanoma x , melanoma y , T-cells, TNF- α 4 3 2 1 0 2 4 6 8 10 Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 12 / 45

  15. Only switches : Relapse caused by stochastic fluctuations Therapy with 1 type of T-cell 3 fixed points With reasonable parameters we have : n y 4 Pxy000 Pxy z x 0w 3 2 P00000 1 Pxy z x z y w Pxy0 z y w n x 2 4 6 8 Pxyz is stable. Pxy 0 is stable on the invariant sub-space { n z x = 0 } . Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 13 / 45

  16. Only switches : Relapse caused by stochastic fluctuations Therapy with 1 type of T-cell Relapse towards Pxyz , ( K = 200) Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 14 / 45

  17. Only switches : Relapse caused by stochastic fluctuations Therapy with 1 type of T-cell Relapse towards Pxy 0 due to the death of z x Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 15 / 45

  18. Only switches : Relapse caused by stochastic fluctuations Biological parameters Adjustment of parameters : data Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 16 / 45

  19. Only switches : Relapse caused by stochastic fluctuations Biological parameters Adjustment of parameters : simulations ( K = 10 5 ) Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 17 / 45

  20. Only switches : Relapse caused by stochastic fluctuations Therapy with 2 types of T-cells Therapy with 1 types of T-cells � �  ˙ = n x b x − d x − c xx · n x − c xy · n y − t xz · n z x n x + s · n y − s w · n w n x n x    � �   ˙ = n y b y − d y − c yy · n y − c yx · n x − s · n y + s w · n w n x  n y   ˙ = − d zx · n z x + b zx · n z x n x n z x        ˙ = − d w · n w + ℓ x · t xz · n x n z x  n w Event Rates for x Rates for y Reproduction b x b y Natural death d x + c xx n x + c xy n y d y + c yy n x + c yx n y Death due to therapy t xz n z x 0 Switch s w n w s Loren Coquille (IF-Grenoble) LJK - 17 septembre 2015 18 / 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend