u ig u u x x a flory flory huggins
play

U = ig U U x x a Flory, Flory-Huggins - - - - - PowerPoint PPT Presentation

Outline 11.4 Van der Waals perspective o Bubble/Dew Calculations using MRL Regular Solutions (V E = 0, S E = 0) Making the function for G E realistic: energetics of mixing are described by the same energy o 11.4 Van der Waals perspective


  1. Outline 11.4 Van der Waals perspective o Bubble/Dew Calculations using MRL Regular Solutions (V E = 0, S E = 0) Making the function for G E realistic: energetics of mixing are described by the same energy o 11.4 Van der Waals perspective equation for mixtures that we previously developed in Van Laar discussing the simple basis for mixing rules. Scatchard/Hildebrand U ig a ρ ∑ ∑ U – – − = − ρ ig U U x x a Flory, Flory-Huggins - - - - - - - - - - - - - - - - - - = - - - - - - - - - pg 322 i j ij RT RT o 11.5 Theory - Skip Noting that 1/ ρ = V = Σ x i V i according to “regular o 11.6 Local Composition Theory ∑ ∑ solution theory,” a = x i x j a ij Wilson ∑ ∑ – x i x j a ij UNIQUAC ( U ig ) U – = - - - - - - - - - - - - - - - - - - - - - - - - - - - - UNIFAC ∑ x i V i For the pure fluid, taking the limit as x i → 1, 1 2 van Laar a ii x i a ii U ig U is U ig ( ) i ⇒ ( ) ∑ U – = – - - - - - – = – - - - - - - - - - - V i V i 2 For a binary mixture, subtracting the ideal solution F a a I x x V V ≡ − ⇒ = 11 22 E 1 2 1 2 Q U x V Q result to get the excess energy gives, G J + V V x V H 1 2 K 1 1 2 2 A A x x  2 a 11 2 a 22  11.27 = = a 11 a 22 x 1 + 2 x 1 x 2 a 12 + x 2 E E 12 21 1 2 G U U E   + = x 1 - - - - - - - + x 2 - - - - - - - – - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ( x A x A )   V 1 V 2 x 1 V 1 + x 2 V 2 1 12 2 21 A 12 ln γ 2 11.28 γ 1 ln = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 A 12 x 1 exchange subscripts 1 + - - - - - - - - - - - - - A 21 x 2 3 4

  2. Fitting Van Laar to a single experiment: Infinite dilution can be used. See example 11.7 γ 2 x 2 ln 2 γ 1 1 A 12 = ln + - - - - - - - - - - - - - - - γ 1 ln x 1 ∞ γ 1 ln = A 12 ln γ i ∞ γ 2 γ 1 ln ln 2 x 1 γ 2 1 A 21 = ln + - - - - - - - - - - - - - - - γ 2 x 2 ln Azeotrope point can be used. See example 11.6 0 x i γ i P i sat y i P x 1 = P y i P γ i = - - - - - - - - - - - - - = - - - - - - - - - sat sat x i P i P i 5 6 Scatchard Hildebrand d i ∫ a / V is known as the "solubility parameter" ii i a 12 = a a ∆ ∆ − 11 22 vap vap U H RT δ i ≡   = x 1 x 2 V 1 V 2 - a 11 a 22 2 a 11 - a 22 U E   V V = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - – - - - - - - - - - - - - - i i x 1 V 1 + x 2 V 2  2 2 2 2  V 1 V 2 V 1 V 2 This is a predictive technique valid for nonpolar 2 substances. See table 11.1 for parameters.   x 1 x 2 V 1 V 2 a 11 a 22 U E   = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - – - - - - - - - - - - -   x 1 V 1 + x 2 V 2 V 1 V 2 Also can make adjustable. ( ) = = Φ Φ δ − δ + 2 E E a 12 = a 1 a 2 1 – k 12 G U f ( x V x V ) a 1 2 1 2 1 1 2 2 = = ΦΦ δ − δ + 2 E E G U f ( xV x V ) 2 ) 2 γ 1 V 1 Φ 2 [ ( δ 1 δ 2 2 k 12 δ 1 δ 2 ] a RT ln = – + 1 2 1 2 1 1 2 2 Â F i ∫ x V / x V is known as the "volume fraction" i i i i 7 8

  3. Van Laar and Scatchard-Hildbrand Flory’s Equation Recall Ideal Solution result (pg 95) 355 n 1 permit mixing n 2 350 345 V T V T T(K) ∆ S 1 = n 1 R ln - - - - - - = n tot x 1 R ln - - - - - - Scatchard-Hildebrand i i 340 V 1 V 1 k ij =-0.038 335 V T V T van Laar ∆ S 2 = n 2 R ln - - - - - - = n tot x 2 R ln - - - - - - 330 i i 0 0.2 0.4 0.6 0.8 1 V 2 V 2 x,y MeOH methanol + benzene 9 10   ( )λ ( )λ V T V T x 1 V 1 + x 2 V 2 x 1 V 1 + x 2 V 2     ∆ ∆ ∆   ∆ S = S 1 + S 2 = n tot R x 1 ln - - - - - - + x 2 ln - - - - - - S = nR x 1 ln - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + x 2 ln - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     x 1 V 1 λ x 2 V 2 λ   i i V 1 V 2 is ∆ ( ) = ln + ln S nR x 1 x 1 x 2 x 2 free volume (not occupied) is S E S is S is ( ) ( ) ∆ ∆ ∑ ∑ = S – = S – x i S i – – x i S i = S – S n i V i λ V f i = , athermal ( )λ V f = n 1 V 1 + n 2 V 2 Φ Φ = − = + E E E 1 2 G H TS RT x ( ln x ln ) 1 2 x x 1 2 11 12

  4. Flory-Huggins Model 11.6 Local composition models (nonrandom) Common Features Φ 1 Φ 2 o Lattice Model - Fixed number of neighbors = 10   G E Φ 1 Φ 2 x 1 ( )χ RT = RT x 1 ln - - - - - - + x 2 ln - - - - - - + + x 2 R o Uses G E = A E approximation (good)   x 1 x 2 o Local Composition Flory Scatchard-Hildebrand x 21 - 2’s around 1 1 V 1 δ 1 ( δ 2 ) 2 2 – x 11 - 1’s around 1 V 2 χ = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - = - - - - - - R RT V 1 1 x 12 - 1’s around 2 χ athermal = 0 x 22 - 2’s around 2 1 2 However χ usually nonzero even with H E = 0 (compensate for error in Flory) 13 14 Wilson’s equation x 21 x 2 x 12 x 1 - Ω 21 - Ω 12 - - - - - - - = - - - - - - - - - - - = - - - - V 1 – A   x 11 x 1 x 22 x 2 Ω 12 Λ 21 21 = = - - - - - - exp - - - - - - - - - - -   V 2 RT o Two-fluid Theory ( ) ( ) 1 2 ( U ig ) ( U ig ) ( U ig ) U – = x 1 U – + x 2 U – integrate U E to get A E = G E (Eqn 11.85) differentiate G E to get γ expressions Λ 12 Λ 21 - x 1 x 2 Ω 21 ε 21 ( ε 11 ) x 2 x 1 Ω 12 ε 12 ( ε 22 )   N A z – – γ 1 ( x 2 Λ 12 ) U E ln = – ln x 1 + + x 2 - - - - - - - - - - - - - - - - - - - - - - - - - – - - - - - - - - - - - - - - - - - - - - - - - - - = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   x 2 Λ 12 x 1 Λ 21 x 2 Ω 21 x 1 Ω 12 x 1 + + x 2 2 x 1 + + x 2 A E U E – - T d ∫ - - - - - - - = - - - - - - - - - - - - - - - + C RT RT T 15 16

  5. UNIQUAC A z ε ij ( ε jj ) – – q i N q i – a q i     Ω ij ij - τ ij = - - - - exp - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - = - - - - exp - - - - - - - - - = - - -     q j 2 RT q j T q j correction to Flory q = surface area of molecule Flory ν k R k ∑ r i E G volume (look up) = Φ Φ } ln / + x ln / x x x groups a f a f comb 1 1 1 2 2 2 ν k Q k ∑ RT q i surface area (look up) − Φ θ + Φ θ groups 5 q x ln / q x ln / a f a f θ i ( ) ⁄ ( ) 1 1 1 1 2 2 2 2 } ∑ x i q i x i q i surface area fractions resid − θ + θ τ − θ τ + θ ln( ) ln( ) q x q x – a 1 1 1 2 21 2 2 1 12 2   parameter τ ij ij = exp - - - - - - - - -   T 17 18 Φ 1 Φ 1 Φ 1 Φ 1     Group parameters for the UNIFAC and UNIQUAC equations. γ 1 ln = ln - - - - - - + 1 – - - - - - - – 5 q 1 ln - - - - - - + 1 – - - - - - - AC in the table means aromatic carbon. (DIFFERS SLIGHTLY FROM TEXT)     θ 1 θ 1 x 1 x 1 Main Sub- R(rel.vol.) Q(rel.area) Example θ 2 τ 12 θ 1 Group group CH2 CH3 0.9011 0.8480 ( θ 1 θ 2 τ 21 ) + q 1 1 – ln + – - - - - - - - - - - - - - - - - - - - - - - - - – - - - - - - - - - - - - - - - - - - - - - - - - CH2 0.6744 0.5400 n-hexane: 4 CH2+2 CH3 θ 1 θ 2 τ 21 θ 1 τ 12 θ 2 + + CH 0.4469 0.2280 isobutane: 1CH+3 CH3 C 0.2195 0 neopentane: 1C+ 4 CH3 C=C CH2=CH 1.2454 1.1760 1-hexene: 1 CH2=CH+3 CH2+1 CH3 Φ 2 Φ 2 Φ 2 Φ 2     CH=CH 1.1167 0.8670 2-hexene: 1 CH=CH+2 CH2+2 γ 2 ln = ln - - - - - - + 1 – - - - - - - – 5 q 2 ln - - - - - - + 1 – - - - - - -     CH3 θ 2 θ 2 x 2 x 2 CH2=C 1.1173 0.9880 CH=C 0.8886 0.6760 θ 1 τ 21 θ 2 C=C 0.6605 0.4850 ( θ 1 τ 12 θ 2 ) + q 2 1 – ln + – - - - - - - - - - - - - - - - - - - - - - - - - – - - - - - - - - - - - - - - - - - - - - - - - - ACH ACH 0.5313 0.4000 benzene: 6ACH θ 1 θ 2 τ 21 θ 1 τ 12 θ 2 + + AC 0.3652 0.1200 benzoic acid: 5ACH+1AC+1COOH ACCH2 ACCH3 1.2663 0.9680 toluene: 5ACH+1ACCH3 ACCH2 1.0396 0.6600 ethylbenzene: 5ACH+1ACCH2+1CH2 ACCH 0.8121 0.3480 OH OH 1.0000 1.2000 n-propanol: 1OH+1 CH3+2 CH2 19 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend