two 2 traces
play

Two 2-traces Simon Willerton University of Sheffield f Tr - PowerPoint PPT Presentation

Two 2-traces Simon Willerton University of Sheffield f Tr ( f ) := V Tr ( f ) := V f Traces What is a trace? Tr ( f g ) = Tr ( g f ) Tr ( f ) = Tr ( a f a 1 ) Traces in a monoidal


  1. Two 2-traces Simon Willerton University of Sheffield   f   Tr ց ( f ) := θ V   Tr � ( f ) := V f

  2. Traces What is a trace? Tr ( f ◦ g ) = Tr ( g ◦ f ) Tr ( f ) = Tr ( a ◦ f ◦ a − 1 )

  3. Traces in a monoidal category In ( C , ⊗ , 1 ) , an object V ∗ is left-dual to V if there exist morphisms V ∗ V V ∗ V ev − V ∗ ⊗ V coev V ⊗ V ∗ ← ← − − 1 1 such that V ∗ V ∗ V = = V If V is also left dual to V ∗ then V and V ∗ are bidual. f If V has a bidual and V ← − V define Tr ( f ) := ∈ Hom ( 1 , 1 ) . f V In ( Vect , ⊗ , C ) this gives the usual trace on finite dimensional vector spaces.

  4. Transposes (or adjoints or duals) f If V and W have biduals then V ← − W has a transpose (or is cyclic) if W ∗ f W ∗ f ∗ V ∗ f V ∗ = =: W ∗ V ∗ Theorem (Trace property) g f If V ← − W and W ← − V with f having a transpose then f ∗ Tr ( f ◦ g ) = = f g g = = Tr ( g ◦ f ) g f

  5. � � � � � � � Examples of monoidal bicategories objects 1-morphisms composition 2-morphisms T × Y S � T ′ � T � � � � � � � � � T Span Sets � � � × � T � S � � � � � � � � � � � � � � � � � � Y X � � Y X Z Y X Hom B , A ( B M A , B M ′ Bim Algebras/ C B M A C N B ⊗ B B M A A ) ⊗ C C op ⊗ D → V V -Mod V -cats ⊗ D V -nat trans ⊗ 2-Tang pts in plane cobordisms F E • Ext • Y × X ( E • , F • ) ↓ × Var C -manifolds convolution Y × X ⊗ L ⊗ C DBim Diff algs/ C → B M i A → B M i − 1 Ext • B × A op ( B M • A , B N • → A ) B A

  6. Biduals in a monoidal bicategory In C , an object V ∗ is left-dual to V if there exist 1-morphisms V ∗ V V ∗ V ev − V ∗ ⊗ V coev V ⊗ V ∗ 1 ← ← − − 1 and 2-isomorphisms ∼ ∼ V ∗ V ∗ V ⇒ ⇒ V such that the Swallowtail Relations hold, e.g., ⇒ ⇒ ⇒ Id = ⇒ . If V is also left dual to V ∗ then V and V ∗ are bidual.

  7. Transposes in monoidal bicategories f A 1-morphism V ← − W has a transpose (or is cyclic) if there is a 1-morphism f ∗ W ∗ − V ∗ : ← W ∗ f ∗ V ∗ together with isomorphisms ∼ W ∗ f ∗ ∼ W ∗ f V ∗ f V ∗ ⇒ ⇐ W ∗ V ∗ satisfying some conditions. This gives for example ∼ f ∗ ⇒ f

  8. � � � Examples of duals in monoidal bicategories object bidual evaluation morphism transpose X � T T ∆ Span X X � � � � � � � � � � � � � � � X × X Y X X Y ⋆ A op Bim A C A A ⊗ A op B M A A op M B op C op V -Mod C C op ⊗ C ⊗ ⋆ Hom C op ⊗ D → V ( D op ) op ⊗ C op → V − − − → V 2-Tang E • E • O ∆ Var X X ↓ ↓ ↓ ⋆ × X × X Y × X X × Y A • A • op C A • B • M • A • op M • DBim A • ⊗ A • op A • B • op

  9. The round trace f If V has a bidual and V ← − V define the round trace: Tr � ( f ) := ∈ 1 - Hom ( 1 , 1 ) . V f Theorem (Trace property) f g If V ← − W and W ← − V with f having a transpose then Tr � ( f ◦ g ) ∼ = Tr � ( g ◦ f ) . ∼ Tr � ( f ◦ g ) = f ∗ ⇒ f g g ∼ = Tr � ( g ◦ f ) ⇒ g f

  10. The diagonal trace This can be defined in a bicategory without monoidal structure. f If V is an object of a bicategory and V ← − V define the diagonal trace:   f   Tr ց ( f ) := 2 - Hom ( Id V , f ) = θ  V  Theorem (Trace property) a ′ η a − W with a 2 -morphism a ◦ a ′ If W ← − V and V ← ⇐ Id W then you get a (functorial) morphism between sets (or V -objects): η ∗ Tr ց ( f ) → Tr ց ( a ◦ f ◦ a ′ ) − a ′ f a f �→ θ θ V W a In particular if W ← − V is an equivalence then Tr ց ( f ) ∼ = Tr ց ( a ◦ f ◦ a − 1 ) .

  11. � Examples of traces in monoidal bicategories Tr � ( f ) Tr ց ( f ) object endo, f “choice of loop at T Span X � “loops in T ” � � � � each x ∈ X ” X X M / { ma − am } { m ∈ M | am = ma } Bim A A M A coinvariants invariants Z c Z V -Mod C C op ⊗ C F F ( c , c ) F ( c , c ) − → V c 8 9 < = 2-Tang : ; E • HH • ( X , E • ) HH • ( X , E • ) Var X ↓ X × X A • A • M • HH • ( A • , M • ) HH • ( A • , M • ) DBim A •

  12. Dimension The dimension of an object can be defined to be the trace of the identity. Dim � ( V ) := Tr � ( Id V ) = ∈ 1 - Hom ( 1 , 1 ) V � � Dim ց ( V ) := Tr ց ( Id V ) = 2 - Hom ( Id V , Id V ) = θ V ◮ Dim ց ( V ) is a commutative monoid ◮ Dim ց ( V ) acts on Dim � ( V ) Dim ց ( V ) → 2 - Hom Dim � ( V ) , Dim � ( V ) � � �→ θ θ V

  13. Examples of dimensions in monoidal bicategories Dim � ( V ) Dim ց ( V ) object, V Span X X { ⋆ } Bim A A / [ A , A ] Z(A) Z c V -Mod C C ( c , c ) V -NAT ( Id C , Id C ) 2-Tang HH • ( X ) Var X HH • ( X ) A • HH • ( A • ) HH • ( A • ) DBim

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend