towards a coalgebraic chomsky hierarchy
play

Towards a Coalgebraic Chomsky Hierarchy Sergey Goncharov , Stefan - PowerPoint PPT Presentation

Towards a Coalgebraic Chomsky Hierarchy Sergey Goncharov , Stefan Milius, Alexandra Silva CMCS 2014, Grenoble, 6.04.2014 Short Histrory of Coalgebraic Invasion to Automata Theory Deterministic automata as coalgebras [Rutten, 1998] .


  1. Towards a Coalgebraic Chomsky Hierarchy Sergey Goncharov , Stefan Milius, Alexandra Silva CMCS 2014, Grenoble, 6.04.2014

  2. Short Histrory of Coalgebraic Invasion to Automata Theory • Deterministic automata as coalgebras [Rutten, 1998] . • Generalized regular expressions and Kleene’s theorem for (Kripke-)polynomial functors [Silva, 2010] . • Generalized powerset construction [Silva et al., 2010] . • Regular expressions for equationally presented functors and monads [Myers, 2013] . • Context-free languages, coalgebraically [Winter et al., 2013] . CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 2

  3. Base Case: Moore Automata Moore automaton with input alphabet A and output alphabet B is given by t m : X × A → X o m : X → B (transition) and (output) Thus, a Moore automaton is a coalgebra m : X → B × X A on Set . CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 3

  4. We shall assume finite Base Case: Moore Automata Moore automaton with input alphabet A and output alphabet B is given by t m : X × A → X o m : X → B (transition) and (output) Thus, a Moore automaton is a coalgebra m : X → B × X A on Set . CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 3

  5. We shall assume finite Base Case: Moore Automata Moore automaton with input alphabet A and output alphabet B is given by t m : X × A → X o m : X → B (transition) and (output) Thus, a Moore automaton is a coalgebra m : X → B × X A on Set . A final L A , B -coalgebra is carried by the set B A ∗ of formal power series on B with coalgebra structure � o , t � : B A ∗ → B × ( B A ∗ ) A o ( σ : A ∗ → B ) = σ ( ε ) t ( σ : A ∗ → B , a ) = λ w .σ ( a · w ) . and CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 3

  6. L A , B X := B × X A We shall assume finite Base Case: Moore Automata Moore automaton with input alphabet A and output alphabet B is given by t m : X × A → X o m : X → B (transition) and (output) Thus, a Moore automaton is a coalgebra m : X → B × X A on Set . A final L A , B -coalgebra is carried by the set B A ∗ of formal power series on B with coalgebra structure � o , t � : B A ∗ → B × ( B A ∗ ) A o ( σ : A ∗ → B ) = σ ( ε ) t ( σ : A ∗ → B , a ) = λ w .σ ( a · w ) . and CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 3

  7. L A , B X := B × X A We shall assume finite Base Case: Moore Automata Moore automaton with input alphabet A and output alphabet B is given by t m : X × A → X o m : X → B (transition) and (output) Thus, a Moore automaton is a coalgebra m : X → B × X A on Set . A final L A , B -coalgebra is carried by the set B A ∗ of formal power series on B with coalgebra structure � o , t � : B A ∗ → B × ( B A ∗ ) A o ( σ : A ∗ → B ) = σ ( ε ) t ( σ : A ∗ → B , a ) = λ w .σ ( a · w ) . and Derivatives: given w ∈ A ∗ , ∂ ε ( σ ) = σ ∂ a · w ( σ ) = t ( ∂ w ( σ ) , a ) and If B = 2 then B A ∗ ≃ P ( A ∗ ) is the set of all formal languages over A . CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 3

  8. � � Rationality of Formal Power Series By the the universal property of the final coalgebra for any m : X → B × X A there exists a unique L A , B -coalgebra homomorphism � m such that: � � B A ∗ m X ι m � B × ( B A ∗ ) A B × X A id × � m A Given x ∈ X , � x � m := � m ( x ) is the “language” recognized by m at x . A formal power series σ : A ∗ → B is rational if { ∂ w ( σ ) | w ∈ A ∗ } is finite. Theorem. A formal power series σ is rational iff σ = � x � � m for some m : X → B × X A and x ∈ X . CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 4

  9. � � � � Generalized Powerset Construction and T -automata Definition: Let T be a monad. A T -automaton is a triple of maps o m : X → B , t m : X × A → TX , a m : TB → B where a m is a T -algebra. Essentially, a T -automaton is a coalgebra m : X → B × ( TX ) A . η m ♯ � B A ∗ X TX � ������������������ ι m m ♯ m ♯ ) A id × ( � � B × ( B A ∗ ) A B × ( TX ) A Factorization m = m ♯ η is unique and we put � x � m = � η ( x ) � m ♯ . Theorem: If B is finite then � x � m is rational. CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 5

  10. � � � � Generalized Powerset Construction and T -automata Definition: Let T be a monad. A T -automaton is a triple of maps o m : X → B , t m : X × A → TX , a m : TB → B where a m is a T -algebra. Essentially, a T -automaton is a coalgebra m : X → B × ( TX ) A . η m ♯ � P A ∗ P X X � ������������������ ι m m ♯ m ♯ ) A id × ( � � 2 × ( P A ∗ ) A 2 × ( P X ) A Factorization m = m ♯ η is unique and we put � x � m = � η ( x ) � m ♯ . Theorem: If B is finite then � x � m is rational. CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 5

  11. Monads as Theories An algebraic theory is given by a signature Σ and a set of equations. Any algebraic theory E defines a monad: • T E X = ‘set of Σ -terms over X modulo E ’; • η coerces a variable to a term; • σ ∗ ( t ) applies substitution σ : X → T E Y to p : T E X . Example: Finite powerset monad P ω ⇐ ⇒ join semilattices with bottom. Example: Finite store monad TX = ( X × S ) S ⇐ ⇒ finite mnemoids ( lookup l : X v → X , update l , v : X → X where S ∼ = L → V ). CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 6

  12. Expressions for T -automata (by Example) B = {⊤ , ⊥} a a T = P ω b b q 0 q 1 q 2 start b   e 0 = a . e 0 ⋔ b . e 1 ⋔ ⊥  e 1 = a . ∅ ⋔ b . ( e 0 + e 2 ) ⋔ ⊥   e 2 = a . e 0 ⋔ b . ∅ ⋔ ⊤ Equivalently, e 0 = µ x . ( a . x ⋔ b .µ y . ( a . ∅ ⋔ b . ( x + µ z . ( a . x ⋔ b . ∅ ⋔ ⊤ )) ⋔ ⊥ ) ⋔ ⊥ ) . CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 7

  13. Stack T -automata Stack monad is a submonad of the store monad Γ ∗ → ( X × Γ ∗ ) : � r , t � : Γ ∗ → ( X × Γ ∗ ) is in TX iff r ( u · w ) = r ( u ) t ( u · w ) = t ( u ) · w whenever | u | > k for some k . Stack theory is given by pop : X n + 1 → X and push i : X → X ( i ≤ n ): push i ( pop ( x 1 , . . . , x n , y )) = x i pop ( push 1 ( x ) , . . . , push n ( x ) , x ) = x pop ( x 1 , . . . , x n , pop ( y 1 , . . . , y n , z )) = pop ( x 1 , . . . , x n , z ) Stack T -automaton is a T -automaton m : X → B (Γ) × ( TX ) A where B (Γ) are predicates over Γ ∗ such that p ∈ B (Γ) iff p ( u · w ) ⇐ ⇒ p ( u ) once | u | > k with some k . CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 8

  14. Stack T -automata Γ = { γ 1 , . . . , γ n } is stack alphabet Stack monad is a submonad of the store monad Γ ∗ → ( X × Γ ∗ ) : � r , t � : Γ ∗ → ( X × Γ ∗ ) is in TX iff r ( u · w ) = r ( u ) t ( u · w ) = t ( u ) · w whenever | u | > k for some k . Stack theory is given by pop : X n + 1 → X and push i : X → X ( i ≤ n ): push i ( pop ( x 1 , . . . , x n , y )) = x i pop ( push 1 ( x ) , . . . , push n ( x ) , x ) = x pop ( x 1 , . . . , x n , pop ( y 1 , . . . , y n , z )) = pop ( x 1 , . . . , x n , z ) Stack T -automaton is a T -automaton m : X → B (Γ) × ( TX ) A where B (Γ) are predicates over Γ ∗ such that p ∈ B (Γ) iff p ( u · w ) ⇐ ⇒ p ( u ) once | u | > k with some k . CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 8

  15. T -automata and Context-free Languages Theorem. If m is a stack T -automaton then for any x ∈ X and any s ∈ Γ ∗ , � � w ∈ A ∗ | � x � m ( w )( s ) is a deterministic real-time CFL; and conversely: any deterministic real-time CFL can be obtained in this way. Example: Expression µ x . ( a . push ( x ) ⋔ b . pop ( x , ⊤ ) ⋔ ⊥ ) corresponds to context-free grammar: X → aXX , X → b . Further results: • Nondeterministic stack T -automata capture CFL; • Nondeterministic ( m > 2 ) -stack T -automata capture NTIME. CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 9

  16. Tape Monad Tape monad is a submonad of the store monad Z × Γ Z → ( X × Z × Γ Z ) : � r , z , t � : Z × Γ Z → ( X × Z × Γ Z ) is in TX iff there is k such that for any i , j , σ, σ ′ if σ = i ± k σ ′ then t ( i , σ ) = i ± k σ, t ( i , σ ) = i ± k t ( i , σ ′ ) , t ( i , σ + j ) = t ( i + j , σ ) + j , z ( i , σ ) = z ( i , σ ′ ) , z ( i , σ + j ) = z ( i + j , σ ) − j , | z ( i , σ ) − i | ≤ k , r ( i , σ ) = r ( i , σ ′ ) , r ( i , σ + j ) = r ( i + j , σ ) . where σ + j ( i ) = σ ( i + j ) ; σ = i ± k σ ′ iff σ ( j ) = σ ′ ( j ) for all j such that | i − j | ≤ k ; σ = i ± k σ ′ iff σ ( j ) = σ ′ ( j ) for all j such that | i − j | > k . Tape theory is given over signature of operations: read : n → 1, write i : n → 1 (1 ≤ i ≤ n ), lmove : 1 → 1, rmove : 1 → 1. Theorem: Tape theory is not finitely axiomatizable. CMCS 2014, Grenoble, 6.04.2014 | Sergey Goncharov , Stefan Milius, Alexandra Silva | 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend