totally positive spaces topology and applications
play

Totally positive spaces: topology and applications Pavel Galashin - PowerPoint PPT Presentation

Totally positive spaces: topology and applications Pavel Galashin April 26, 2019 Joint work with Steven Karp, Thomas Lam, and Pavlo Pylyavskyy arXiv:1707.02010 , arXiv:1807.03282 , arXiv:1904.00527 w 0 w 0 s 2 s 1 s 1 s 2 s 2 s 1 s 1 s 2


  1. Flag variety Let G := GL n ( R ) and B := { upper triangular n × n matrices } . Definition Flag variety: { V 0 ⊂ V 1 ⊂ · · · ⊂ V n = R n | dim V i = i for all 0 ≤ i ≤ n } . G / B = gB ↔ ( V 0 , V 1 , . . . , V n ) , where V i := span of first i columns of g . Definition (Lusztig (1994)) Let G � 0 = { totally nonnegative matrices in G } and ( G / B ) � 0 := { gB | g ∈ G � 0 } = { gB | g ∈ U − � 0 } . Pavel Galashin Totally positive spaces 04/26/2019 8 / 24

  2. Flag variety Let G := GL n ( R ) and B := { upper triangular n × n matrices } . Definition Flag variety: { V 0 ⊂ V 1 ⊂ · · · ⊂ V n = R n | dim V i = i for all 0 ≤ i ≤ n } . G / B = gB ↔ ( V 0 , V 1 , . . . , V n ) , where V i := span of first i columns of g . Definition (Lusztig (1994)) Let G � 0 = { totally nonnegative matrices in G } and ( G / B ) � 0 := { gB | g ∈ G � 0 } = { gB | g ∈ U − � 0 } . Example All n ! coordinate flags { wB | w ∈ S n } belong to ( G / B ) � 0 . Pavel Galashin Totally positive spaces 04/26/2019 8 / 24

  3. Face poset of ( G / B ) � 0 Definition Let Q := { ( v , w ) ∈ S n × S n | v ≤ w } . Pavel Galashin Totally positive spaces 04/26/2019 9 / 24

  4. Face poset of ( G / B ) � 0 Definition Let Q := { ( v , w ) ∈ S n × S n | v ≤ w } . Write v ′ ≤ v ≤ w ≤ w ′ . ( v , w ) � ( v ′ , w ′ ) ⇐ ⇒ Pavel Galashin Totally positive spaces 04/26/2019 9 / 24

  5. Face poset of ( G / B ) � 0 Definition Let Q := { ( v , w ) ∈ S n × S n | v ≤ w } . Write v ′ ≤ v ≤ w ≤ w ′ . ( v , w ) � ( v ′ , w ′ ) ⇐ ⇒ Theorem (Rietsch (1999, 2006)) ( Q , � ) is the “face poset” of ( G / B ) � 0 . Pavel Galashin Totally positive spaces 04/26/2019 9 / 24

  6. Face poset of ( G / B ) � 0 Definition Let Q := { ( v , w ) ∈ S n × S n | v ≤ w } . Write v ′ ≤ v ≤ w ≤ w ′ . ( v , w ) � ( v ′ , w ′ ) ⇐ ⇒ Theorem (Rietsch (1999, 2006)) ( Q , � ) is the “face poset” of ( G / B ) � 0 . Theorem (Williams (2007)) The poset ( Q , � ) is thin and shellable. Pavel Galashin Totally positive spaces 04/26/2019 9 / 24

  7. Face poset of ( G / B ) � 0 Definition Let Q := { ( v , w ) ∈ S n × S n | v ≤ w } . Write v ′ ≤ v ≤ w ≤ w ′ . ( v , w ) � ( v ′ , w ′ ) ⇐ ⇒ Theorem (Rietsch (1999, 2006)) ( Q , � ) is the “face poset” of ( G / B ) � 0 . Theorem (Williams (2007)) The poset ( Q , � ) is thin and shellable. Thus there exists some regular CW complex with face poset ( Q , � ) . Pavel Galashin Totally positive spaces 04/26/2019 9 / 24

  8. Face poset of ( G / B ) � 0 Definition Let Q := { ( v , w ) ∈ S n × S n | v ≤ w } . Write v ′ ≤ v ≤ w ≤ w ′ . ( v , w ) � ( v ′ , w ′ ) ⇐ ⇒ Theorem (Rietsch (1999, 2006)) ( Q , � ) is the “face poset” of ( G / B ) � 0 . Theorem (Williams (2007)) The poset ( Q , � ) is thin and shellable. Thus there exists some regular CW complex with face poset ( Q , � ) . Conjecture (Williams (2007)) ( G / B ) � 0 is a regular CW complex. Pavel Galashin Totally positive spaces 04/26/2019 9 / 24

  9. → ( G / B ) � 0 U � 0 ֒ ( Q , � ) (id , w 0 ) (id , s 1 s 2 ) (id , s 2 s 1 ) ( s 1 , w 0 ) ( s 2 , w 0 ) (id , s 1 ) (id , s 2 ) ( s 1 , s 1 s 2 ) ( s 1 , s 2 s 1 ) ( s 2 , s 1 s 2 ) ( s 2 , s 2 s 1 ) ( s 1 s 2 , w 0 ) ( s 2 s 1 , w 0 ) (id , id) ( s 1 , s 1 ) ( s 2 , s 2 ) ( s 1 s 2 , s 1 s 2 ) ( s 2 s 1 , s 2 s 1 ) ( w 0 , w 0 ) Pavel Galashin Totally positive spaces 04/26/2019 10 / 24

  10. → ( G / B ) � 0 U � 0 ֒ ( Q , � ) ( G / B ) � 0 w 0 (id , w 0 ) s 2 s 1 s 1 s 2 (id , s 1 s 2 ) (id , s 2 s 1 ) ( s 1 , w 0 ) ( s 2 , w 0 ) (id , s 1 ) (id , s 2 ) ( s 1 , s 1 s 2 ) ( s 1 , s 2 s 1 ) ( s 2 , s 1 s 2 ) ( s 2 , s 2 s 1 ) ( s 1 s 2 , w 0 ) ( s 2 s 1 , w 0 ) s 1 s 2 (id , id) ( s 1 , s 1 ) ( s 2 , s 2 ) ( s 1 s 2 , s 1 s 2 ) ( s 2 s 1 , s 2 s 1 ) ( w 0 , w 0 ) id Pavel Galashin Totally positive spaces 04/26/2019 10 / 24

  11. → ( G / B ) � 0 U � 0 ֒ ( Q , � ) ( G / B ) � 0 w 0 (id , w 0 ) s 2 s 1 s 1 s 2 (id , s 1 s 2 ) (id , s 2 s 1 ) ( s 1 , w 0 ) ( s 2 , w 0 ) (id , s 1 ) (id , s 2 ) ( s 1 , s 1 s 2 ) ( s 1 , s 2 s 1 ) ( s 2 , s 1 s 2 ) ( s 2 , s 2 s 1 ) ( s 1 s 2 , w 0 ) ( s 2 s 1 , w 0 ) s 1 s 2 (id , id) ( s 1 , s 1 ) ( s 2 , s 2 ) ( s 1 s 2 , s 1 s 2 ) ( s 2 s 1 , s 2 s 1 ) ( w 0 , w 0 ) id w 0 s 2 s 1 s 1 s 2 ( S n ≤ ) U � 0 s 1 s 2 id id Pavel Galashin Totally positive spaces 04/26/2019 10 / 24

  12. → ( G / B ) � 0 U � 0 ֒ ( Q , � ) ( G / B ) � 0 w 0 (id , w 0 ) (id , w 0 ) s 2 s 1 s 2 s 1 s 1 s 2 s 1 s 2 (id , s 1 s 2 ) (id , s 1 s 2 ) (id , s 2 s 1 ) (id , s 2 s 1 ) ( s 1 , w 0 ) ( s 2 , w 0 ) (id , s 1 ) (id , s 1 ) (id , s 2 ) (id , s 2 ) ( s 1 , s 1 s 2 ) ( s 1 , s 2 s 1 ) ( s 2 , s 1 s 2 ) ( s 2 , s 2 s 1 ) ( s 1 s 2 , w 0 ) ( s 2 s 1 , w 0 ) s 1 s 1 s 2 s 2 (id , id) (id , id) ( s 1 , s 1 ) ( s 2 , s 2 ) ( s 1 s 2 , s 1 s 2 ) ( s 2 s 1 , s 2 s 1 ) ( w 0 , w 0 ) id w 0 s 2 s 1 s 1 s 2 ( S n ≤ ) U � 0 s 1 s 2 id id Pavel Galashin Totally positive spaces 04/26/2019 10 / 24

  13. Partial flag variety Let P ⊃ B be a parabolic subgroup of G . Pavel Galashin Totally positive spaces 04/26/2019 11 / 24

  14. Partial flag variety Let P ⊃ B be a parabolic subgroup of G . We get a projection flag partial flag π : G / B → G / P ( V 0 , V 1 , . . . , V n − 1 , V n ) �→ ( V 0 , V j 1 , . . . , V j m , V n ) . Pavel Galashin Totally positive spaces 04/26/2019 11 / 24

  15. Partial flag variety Let P ⊃ B be a parabolic subgroup of G . We get a projection flag partial flag π : G / B → G / P ( V 0 , V 1 , . . . , V n − 1 , V n ) �→ ( V 0 , V j 1 , . . . , V j m , V n ) . Lusztig (1994) : ( G / P ) � 0 := π (( G / B ) � 0 ) . Pavel Galashin Totally positive spaces 04/26/2019 11 / 24

  16. Partial flag variety Let P ⊃ B be a parabolic subgroup of G . We get a projection flag partial flag π : G / B → G / P ( V 0 , V 1 , . . . , V n − 1 , V n ) �→ ( V 0 , V j 1 , . . . , V j m , V n ) . Lusztig (1994) : ( G / P ) � 0 := π (( G / B ) � 0 ) . Example � GL k ( R ) � ∗ Maximal parabolic subgroup: P = . 0 GL n − k ( R ) Pavel Galashin Totally positive spaces 04/26/2019 11 / 24

  17. Partial flag variety Let P ⊃ B be a parabolic subgroup of G . We get a projection flag partial flag π : G / B → G / P ( V 0 , V 1 , . . . , V n − 1 , V n ) �→ ( V 0 , V j 1 , . . . , V j m , V n ) . Lusztig (1994) : ( G / P ) � 0 := π (( G / B ) � 0 ) . Example � GL k ( R ) � ∗ Maximal parabolic subgroup: P = . 0 GL n − k ( R ) In this case G / P = Gr ( k , n ), and the projection is π : G / B → Gr ( k , n ) , ( V 0 , V 1 , . . . , V n − 1 , V n ) �→ V k . Pavel Galashin Totally positive spaces 04/26/2019 11 / 24

  18. Partial flag variety Let P ⊃ B be a parabolic subgroup of G . We get a projection flag partial flag π : G / B → G / P ( V 0 , V 1 , . . . , V n − 1 , V n ) �→ ( V 0 , V j 1 , . . . , V j m , V n ) . Lusztig (1994) : ( G / P ) � 0 := π (( G / B ) � 0 ) . Example � GL k ( R ) � ∗ Maximal parabolic subgroup: P = . 0 GL n − k ( R ) In this case G / P = Gr ( k , n ), and the projection is π : G / B → Gr ( k , n ) , ( V 0 , V 1 , . . . , V n − 1 , V n ) �→ V k . Postnikov (2006): Gr � 0 ( k , n ) := { V k ∈ Gr ( k , n ) | ∆ I ( V k ) � 0 for all I ⊂ [ n ] of size k } . Pavel Galashin Totally positive spaces 04/26/2019 11 / 24

  19. Partial flag variety Let P ⊃ B be a parabolic subgroup of G . We get a projection flag partial flag π : G / B → G / P ( V 0 , V 1 , . . . , V n − 1 , V n ) �→ ( V 0 , V j 1 , . . . , V j m , V n ) . Lusztig (1994) : ( G / P ) � 0 := π (( G / B ) � 0 ) . Example � GL k ( R ) � ∗ Maximal parabolic subgroup: P = . 0 GL n − k ( R ) In this case G / P = Gr ( k , n ), and the projection is π : G / B → Gr ( k , n ) , ( V 0 , V 1 , . . . , V n − 1 , V n ) �→ V k . Postnikov (2006): Gr � 0 ( k , n ) := { V k ∈ Gr ( k , n ) | ∆ I ( V k ) � 0 for all I ⊂ [ n ] of size k } . Surprising fact: When G / P = Gr ( k , n ), we have ( G / P ) � 0 = Gr � 0 ( k , n ). Pavel Galashin Totally positive spaces 04/26/2019 11 / 24

  20. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  21. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  22. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Lusztig (1998) : ( G / P ) � 0 is contractible. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  23. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Lusztig (1998) : ( G / P ) � 0 is contractible. Williams (2007) : The face poset is thin and shellable. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  24. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Lusztig (1998) : ( G / P ) � 0 is contractible. Williams (2007) : The face poset is thin and shellable. Postnikov–Speyer–Williams (2009) : Gr � 0 ( k , n ) is a CW complex. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  25. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Lusztig (1998) : ( G / P ) � 0 is contractible. Williams (2007) : The face poset is thin and shellable. Postnikov–Speyer–Williams (2009) : Gr � 0 ( k , n ) is a CW complex. Rietsch–Williams (2008) : ( G / P ) � 0 is a CW complex. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  26. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Lusztig (1998) : ( G / P ) � 0 is contractible. Williams (2007) : The face poset is thin and shellable. Postnikov–Speyer–Williams (2009) : Gr � 0 ( k , n ) is a CW complex. Rietsch–Williams (2008) : ( G / P ) � 0 is a CW complex. Rietsch–Williams (2010) : The closure of each cell is contractible. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  27. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Lusztig (1998) : ( G / P ) � 0 is contractible. Williams (2007) : The face poset is thin and shellable. Postnikov–Speyer–Williams (2009) : Gr � 0 ( k , n ) is a CW complex. Rietsch–Williams (2008) : ( G / P ) � 0 is a CW complex. Rietsch–Williams (2010) : The closure of each cell is contractible. Theorem (G.–Karp–Lam) Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  28. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Lusztig (1998) : ( G / P ) � 0 is contractible. Williams (2007) : The face poset is thin and shellable. Postnikov–Speyer–Williams (2009) : Gr � 0 ( k , n ) is a CW complex. Rietsch–Williams (2008) : ( G / P ) � 0 is a CW complex. Rietsch–Williams (2010) : The closure of each cell is contractible. Theorem (G.–Karp–Lam) 2017: Gr � 0 ( k , n ) is homeomorphic to a closed ball. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  29. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Lusztig (1998) : ( G / P ) � 0 is contractible. Williams (2007) : The face poset is thin and shellable. Postnikov–Speyer–Williams (2009) : Gr � 0 ( k , n ) is a CW complex. Rietsch–Williams (2008) : ( G / P ) � 0 is a CW complex. Rietsch–Williams (2010) : The closure of each cell is contractible. Theorem (G.–Karp–Lam) 2017: Gr � 0 ( k , n ) is homeomorphic to a closed ball. 2018: ( G / P ) � 0 is homeomorphic to a closed ball. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  30. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Lusztig (1998) : ( G / P ) � 0 is contractible. Williams (2007) : The face poset is thin and shellable. Postnikov–Speyer–Williams (2009) : Gr � 0 ( k , n ) is a CW complex. Rietsch–Williams (2008) : ( G / P ) � 0 is a CW complex. Rietsch–Williams (2010) : The closure of each cell is contractible. Theorem (G.–Karp–Lam) 2017: Gr � 0 ( k , n ) is homeomorphic to a closed ball. 2018: ( G / P ) � 0 is homeomorphic to a closed ball. 2019: Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  31. Regularity theorem Conjecture (Postnikov (2006), Williams (2007)) Gr � 0 ( k , n ) is a regular CW complex homeomorphic to a ball. ( G / P ) � 0 is a regular CW complex homeomorphic to a ball. Lusztig (1998) : ( G / P ) � 0 is contractible. Williams (2007) : The face poset is thin and shellable. Postnikov–Speyer–Williams (2009) : Gr � 0 ( k , n ) is a CW complex. Rietsch–Williams (2008) : ( G / P ) � 0 is a CW complex. Rietsch–Williams (2010) : The closure of each cell is contractible. Theorem (G.–Karp–Lam) 2017: Gr � 0 ( k , n ) is homeomorphic to a closed ball. 2018: ( G / P ) � 0 is homeomorphic to a closed ball. 2019: Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. Corollary of proof (Hersh (2014)) : Lk � 0 id ⊂ U � 0 is a regular CW complex. Pavel Galashin Totally positive spaces 04/26/2019 12 / 24

  32. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  33. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  34. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = Affine flag variety Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  35. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = Subtraction-free MR Affine flag variety Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  36. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = Subtraction-free MR Link induction Affine flag variety Generalized Poincar´ e Conjecture Smooth vs Topological Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  37. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = Subtraction-free MR Link induction Affine flag variety Generalized Poincar´ e Conjecture Smooth vs Topological Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  38. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  39. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = g ∈ Q Π > 0 Recall: ( G / P ) � 0 = � g . w 0 s 2 s 1 s 1 s 2 s 1 s 2 id Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  40. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = g . For g ∈ Q , define Star � 0 h � g Π > 0 g ∈ Q Π > 0 Recall: ( G / P ) � 0 = � := � h . g w 0 s 2 s 1 s 1 s 2 Π > 0 g s 1 s 2 id Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  41. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = g . For g ∈ Q , define Star � 0 h � g Π > 0 g ∈ Q Π > 0 Recall: ( G / P ) � 0 = � := � h . g w 0 s 2 s 1 s 1 s 2 Π > 0 g s 1 s 2 id Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  42. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = g . For g ∈ Q , define Star � 0 h � g Π > 0 g ∈ Q Π > 0 Recall: ( G / P ) � 0 = � := � h . g ∼ ν g : Star � 0 → Π > 0 × Cone ( Lk � 0 FS atlas: For each g ∈ Q , a map ¯ − g ). g g w 0 s 2 id s 2 s 1 s 1 s 2 w 0 s 1 s 2 ¯ ν g − → Π > 0 g s 1 s 2 s 2 s 1 Π > 0 s 1 g id Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  43. Proof idea Theorem (G.–Karp–Lam (2019)) Gr � 0 ( k , n ) and ( G / P ) � 0 are regular CW complexes. ⇒ Fomin–Shapiro atlas = ⇒ Regular CW complex Bruhat atlas = g . For g ∈ Q , define Star � 0 h � g Π > 0 g ∈ Q Π > 0 Recall: ( G / P ) � 0 = � := � h . g ∼ ν g : Star � 0 → Π > 0 × Cone ( Lk � 0 FS atlas: For each g ∈ Q , a map ¯ − g ). g g w 0 s 2 id s 2 s 1 s 1 s 2 w 0 s 1 s 2 Lk � 0 ¯ ν g − → g Π > 0 g s 1 s 2 s 2 s 1 Π > 0 s 1 g id Pavel Galashin Totally positive spaces 04/26/2019 13 / 24

  44. Part 2. Applications

  45. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. b 3 b 2 b 4 b 1 b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  46. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. b 3 b 2 J e 2 J e 9 J e 3 J e 8 J e 1 b 4 J e 5 b 1 J e 7 J e 4 J e 6 b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  47. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. Ising model: probability measure on spin configurations. b 3 b 2 J e 2 J e 9 J e 3 J e 8 J e 1 b 4 J e 5 b 1 J e 7 J e 4 J e 6 b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  48. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. Ising model: probability measure on spin configurations. b 3 b 2 J e 2 J e 9 J e 3 J e 8 J e 1 b 4 J e 5 b 1 J e 7 J e 4 J e 6 b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  49. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. Ising model: probability measure on spin configurations. b 3 b 2 J e 2 J e 9 J e 3 J e 8 J e 1 b 4 J e 5 b 1 J e 7 J e 4 J e 6 b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  50. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. Ising model: probability measure on spin configurations. b 3 b 2 J e 2 J e 9 J e 3 J e 8 J e 1 b 4 J e 5 b 1 J e 7 J e 4 J e 6 b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  51. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. Ising model: probability measure on spin configurations. b 3 b 2 J e 2 J e 9 J e 3 J e 8 J e 1 b 4 J e 5 b 1 J e 7 J e 4 J e 6 b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  52. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. Ising model: probability measure on spin configurations. b 3 b 2 J e 2 J e 9 J e 3 • More spins aligned = ⇒ higher probability J e 8 J e 1 b 4 J e 5 b 1 J e 7 J e 4 J e 6 b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  53. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. Ising model: probability measure on spin configurations. b 3 b 2 J e 2 J e 9 J e 3 • More spins aligned = ⇒ higher probability J e 8 J e 1 b 4 J e 5 b 1 J e 7 J e 4 J e 6 b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  54. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. Ising model: probability measure on spin configurations. b 3 b 2 • More spins aligned = ⇒ higher probability • Mathematical model for ferromagnetism b 4 b 1 b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  55. Ising model Definition Planar Ising network: planar weighted graph embedded in a disk. Ising model: probability measure on spin configurations. b 3 b 2 • More spins aligned = ⇒ higher probability • Mathematical model for ferromagnetism b 4 b 1 • Phase transitions, critical temperatures, . . . b 5 b 6 Pavel Galashin Totally positive spaces 04/26/2019 15 / 24

  56. Ising model: boundary correlations Let b 1 , . . . , b n be the boundary vertices. Pavel Galashin Totally positive spaces 04/26/2019 16 / 24

  57. Ising model: boundary correlations Let b 1 , . . . , b n be the boundary vertices. Definition Correlation: m ij := Prob(Spin b i = Spin b j ) − Prob(Spin b i � = Spin b j ). Pavel Galashin Totally positive spaces 04/26/2019 16 / 24

  58. Ising model: boundary correlations Let b 1 , . . . , b n be the boundary vertices. Definition Correlation: m ij := Prob(Spin b i = Spin b j ) − Prob(Spin b i � = Spin b j ). Boundary correlation matrix: M ( G , J ) = ( m ij ) n i , j =1 . Pavel Galashin Totally positive spaces 04/26/2019 16 / 24

  59. Ising model: boundary correlations Let b 1 , . . . , b n be the boundary vertices. Definition Correlation: m ij := Prob(Spin b i = Spin b j ) − Prob(Spin b i � = Spin b j ). Boundary correlation matrix: M ( G , J ) = ( m ij ) n i , j =1 . Griffiths (1967) : Correlations are always nonnegative. Pavel Galashin Totally positive spaces 04/26/2019 16 / 24

  60. Ising model: boundary correlations Let b 1 , . . . , b n be the boundary vertices. Definition Correlation: m ij := Prob(Spin b i = Spin b j ) − Prob(Spin b i � = Spin b j ). Boundary correlation matrix: M ( G , J ) = ( m ij ) n i , j =1 . Griffiths (1967) : Correlations are always nonnegative. Kelly–Sherman (1968) : How to describe correlation matrices by inequalities? Pavel Galashin Totally positive spaces 04/26/2019 16 / 24

  61. Ising model: boundary correlations Let b 1 , . . . , b n be the boundary vertices. Definition Correlation: m ij := Prob(Spin b i = Spin b j ) − Prob(Spin b i � = Spin b j ). Boundary correlation matrix: M ( G , J ) = ( m ij ) n i , j =1 . Griffiths (1967) : Correlations are always nonnegative. Kelly–Sherman (1968) : How to describe correlation matrices by inequalities? Definition (G.–Pylyavskyy (2018)) X n := { M ( G , J ) | ( G , J ) is a planar Ising network with n boundary vertices } Pavel Galashin Totally positive spaces 04/26/2019 16 / 24

  62. Ising model: boundary correlations Let b 1 , . . . , b n be the boundary vertices. Definition Correlation: m ij := Prob(Spin b i = Spin b j ) − Prob(Spin b i � = Spin b j ). Boundary correlation matrix: M ( G , J ) = ( m ij ) n i , j =1 . Griffiths (1967) : Correlations are always nonnegative. Kelly–Sherman (1968) : How to describe correlation matrices by inequalities? Definition (G.–Pylyavskyy (2018)) X n := { M ( G , J ) | ( G , J ) is a planar Ising network with n boundary vertices } X n := closure of X n inside the space of n × n matrices. Pavel Galashin Totally positive spaces 04/26/2019 16 / 24

  63. Definition (G.–Pylyavskyy (2018)) X n := { M ( G , J ) | ( G , J ) is a planar Ising network with n boundary vertices } X n := closure of X n inside the space of n × n matrices. Pavel Galashin Totally positive spaces 04/26/2019 17 / 24

  64. Definition (G.–Pylyavskyy (2018)) X n := { M ( G , J ) | ( G , J ) is a planar Ising network with n boundary vertices } X n := closure of X n inside the space of n × n matrices. We define a simple doubling map φ : X n ֒ → Gr ( n , 2 n ): Pavel Galashin Totally positive spaces 04/26/2019 17 / 24

  65. Definition (G.–Pylyavskyy (2018)) X n := { M ( G , J ) | ( G , J ) is a planar Ising network with n boundary vertices } X n := closure of X n inside the space of n × n matrices. We define a simple doubling map φ : X n ֒ → Gr ( n , 2 n ):  1 m 12 m 13 m 14   1 1 m 12 − m 12 − m 13 m 13 m 14 − m 14  m 12 1 m 23 m 24 − m 12 m 12 1 1 m 23 − m 23 − m 24 m 24      �→     m 13 m 23 1 m 34 m 13 − m 13 − m 23 m 23 1 1 m 34 − m 34    m 14 m 24 m 34 1 − m 14 m 14 m 24 − m 24 − m 34 m 34 1 1 Pavel Galashin Totally positive spaces 04/26/2019 17 / 24

  66. Definition (G.–Pylyavskyy (2018)) X n := { M ( G , J ) | ( G , J ) is a planar Ising network with n boundary vertices } X n := closure of X n inside the space of n × n matrices. We define a simple doubling map φ : X n ֒ → Gr ( n , 2 n ):  1 m 12 m 13 m 14   1 1 m 12 − m 12 − m 13 m 13 m 14 − m 14  m 12 1 m 23 m 24 − m 12 m 12 1 1 m 23 − m 23 − m 24 m 24      �→     m 13 m 23 1 m 34 m 13 − m 13 − m 23 m 23 1 1 m 34 − m 34    m 14 m 24 m 34 1 − m 14 m 14 m 24 − m 24 − m 34 m 34 1 1 Pavel Galashin Totally positive spaces 04/26/2019 17 / 24

  67. Definition (G.–Pylyavskyy (2018)) X n := { M ( G , J ) | ( G , J ) is a planar Ising network with n boundary vertices } X n := closure of X n inside the space of n × n matrices. We define a simple doubling map φ : X n ֒ → Gr ( n , 2 n ):  1 m 12 m 13 m 14   1 1 m 12 − m 12 − m 13 m 13 m 14 − m 14  m 12 1 m 23 m 24 − m 12 m 12 1 1 m 23 − m 23 − m 24 m 24      �→     m 13 m 23 1 m 34 m 13 − m 13 − m 23 m 23 1 1 m 34 − m 34    m 14 m 24 m 34 1 − m 14 m 14 m 24 − m 24 − m 34 m 34 1 1 Pavel Galashin Totally positive spaces 04/26/2019 17 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend