theorie van concurrency
play

Theorie van Concurrency najaar 2011 - PowerPoint PPT Presentation

Theorie van Concurrency najaar 2011 http://www.liacs.nl/home/rvvliet/tvc/ derde college: 13 september 2011 4.4 Concurrency 4.5 Fundamental Situations eerste werkcollege: 15 september 2011 opgaven bij 4. EN Systems installatie pipe2 1


  1. Theorie van Concurrency najaar 2011 http://www.liacs.nl/home/rvvliet/tvc/ derde college: 13 september 2011 4.4 Concurrency 4.5 Fundamental Situations eerste werkcollege: 15 september 2011 opgaven bij 4. EN Systems installatie pipe2 1

  2. Theorie van Concurrency — najaar 2011 http://www.liacs.nl/home/rvvliet/tvc/ • hoorcollege/werkgroep ∼ 2/1 Gecorrigeerde data: dinsdag 6 september - 25 oktober, zaal 403, 11.15–13.00 donderdag 8 september - 27 oktober, zaal 403, 11.15–13.00 donderdag 3 november - 8 december, zaal 403, 10.00–13.00 • dictaat + survey paper • opgavenbundel + oplossingen + oude tentamens Samen voor EUR 10,50 • modelleertoets, donderdag 17 november 2011, 10:00–13:00 2

  3. Definition 13. Let M = ( P, T, F, C in ) be an EN system. (1) Let U ⊆ T . U is a disjoint set of transitions , notation disj ( U ), if 1. U � = ∅ and 2. for all transitions t 1 � = t 2 ∈ U : nbh ( t 1 ) ∩ nbh ( t 2 ) = ∅ . (2) Let U ⊆ T and let C ⊆ P . Then U has concession in C (or U can be fired in C , or U is enabled in C ) if 1. disj ( U ), 2. • U ⊆ C , and 3. U • ∩ C = ∅ . Notation: U con C . (3) Let U ⊆ T and let C, D ⊆ P . Then U fires from C to D , written as C [ U � D , if 1. U con C and 2. D = ( C − • U ) ∪ U • . If # U ≥ 2, then U is a concurrent step from C to D . 3

  4. Lemma 15. Let M = ( P, T, F, C in ) be an EN system. Let C ⊆ P and let U ⊆ T with U � = ∅ . Then U con C iff (1) t con C for all t ∈ U , and (2) for all t 1 � = t 2 ∈ U , • t 1 ∩ • t 2 = ∅ and t 1 • ∩ t 2 • = ∅ . 4

  5. Let M = ( P, T, F, C in ) be an EN system. Let Lemma 16. C, D ⊆ P , and let U ⊆ T . Let { U 1 , U 2 } be a partition of U . ∗ If C [ U � D , then there is E 1 ⊆ P such that C [ U 1 � E 1 and E 1 [ U 2 � D . ∗ U = U 1 ∪ U 2 , U 1 ∩ U 2 = ∅ and U 1 , U 2 � = ∅ 5

  6. C • U 1 • U 2 U 1 U 2 E 2 U 2 • U 1 • U • U 1 • U 2 E 1 U 2 U 1 U 2 • U 1 • D Fig. 17. A diamond. 6

  7. p 1 bc 1 c p e pe fc p 2 bc 1 p 1 c 2 e p c pc pc p 1 c 1 p 2 c 2 f c p p 1 bc 2 p 2 c 1 f c p p 2 bc 2 Fig. 18. A configuration graph. 7

  8. Let M = ( P, T, F, C in ) be an EN system. Let Lemma 17. C, D ⊆ P and let U ⊆ T . If C [ U � D , then C [ t 1 · · · t n � D for each ordering ( t 1 , . . . , t n ) of the elements of U . 8

  9. p 1 bc 1 c p e p 2 bc 1 p 1 c 2 e p c p 1 c 1 p 2 c 2 f c p p 1 bc 2 p 2 c 1 f c p p 2 bc 2 Fig. 16. A sequential configuration graph. 9

  10. p 1 bc 1 c p e pe fc p 2 bc 1 p 1 c 2 e p c pc pc p 1 c 1 p 2 c 2 f c p p 1 bc 2 p 2 c 1 f c p p 2 bc 2 Fig. 18. A configuration graph. 10

  11. Lemma 19. Let M = ( P, T, F, C in ) be an EN system. Let C ⊆ P and let s, t ∈ T . If st con C and t con C , then { s, t } con C . 11

  12. Lemma 15. Let M = ( P, T, F, C in ) be an EN system. Let C ⊆ P and let U ⊆ T with U � = ∅ . Then U con C iff (1) t con C for all t ∈ U , and (2) for all t 1 � = t 2 ∈ U , • t 1 ∩ • t 2 = ∅ and t 1 • ∩ t 2 • = ∅ . 12

  13. Lemma 19.5 Let M = ( P, T, F, C in ) be an EN system. Let C ⊆ P and let U ⊆ T . If t i con C for every t i ∈ U and t 1 t 2 . . . t n con C for some order of the elements of U = { t 1 , t 2 , . . . , t n } , then U con C . 13

  14. Let M = ( P, T, F, C in ) be an EN system. Let Theorem 20. C, D ⊆ P and let U ⊆ T with U � = ∅ . Then (1) U con C iff t 1 · · · t n con C for every ordering ( t 1 , . . . , t n ) of the elements of U , and (2) C [ U � D iff C [ t 1 · · · t n � D for every ordering ( t 1 , . . . , t n ) of the elements of U . 14

  15. Let M = ( P, T, F, C in ) be an EN system. Let Lemma 17. C, D ⊆ P and let U ⊆ T . If C [ U � D , then C [ t 1 · · · t n � D for each ordering ( t 1 , . . . , t n ) of the elements of U . 15

  16. Definition 10. Let G 1 = ( V 1 , Γ 1 , Σ 1 , v 1 ) and G 2 = ( V 2 , Γ 2 , Σ 2 , v 2 ) be edge-labelled graphs. Then G 1 and G 2 are isomorphic , denoted by G 1 ≡ G 2 , if there exist two bijections α : V 1 → V 2 and β : Σ 1 → Σ 2 such that α ( v 1 ) = v 2 and, for all v, w ∈ V 1 and all U ⊆ Σ 1 , ( v, U, w ) ∈ Γ 1 iff ( α ( v ) , β ( U ) , α ( w )) ∈ Γ 2 . 16

  17. Theorem 21. For EN systems M and M ′ , SCG( M ) ≡ SCG( M ′ ) iff CG( M ) ≡ CG( M ′ ). 17

  18. t 1 t 2 t 2 t 1 Fig. 19 , 20. Causality. 18

  19. t 1 t 2 Fig. 21. Concurrency. 19

  20. • t 1 • t 2 P C t 1 t 2 P − C t 1 • t 2 • Fig. 22. Concurrency, the complete picture. 20

  21. Causality: t 1 t 2 con C , but not t 2 con C . Concurrency: t 1 t 2 con C , and t 2 con C (Lemma 17 and Lemma 19). Hence, if t 1 t 2 con C , then either causality or concurrency. 21

  22. Definition: Transitions t 1 and t 2 are in conflict in configuration C , if t 1 con C and t 2 con C , but not { t 1 , t 2 } con C . 22

  23. w 1 w 2 in 1 in 2 c 1 p c 2 out 1 out 2 r 1 r 2 d 1 d 2 component 1 component 2 Fig. 5. The mutual exclusion problem. 23

  24. • t 2 • t 1 t 1 t 2 Fig. 23. Input-conflict. 24

  25. t 1 t 2 t 1 • t 2 • Fig. 24. Output-conflict. 25

  26. Concurrency: { t 1 , t 2 } con C , hence t 1 , t 2 con C (Lemma 15). Conflict: t 1 , t 2 con C , but not { t 1 , t 2 } con C . Hence, if t 1 , t 2 con C , then either concurrency or conflict. 26

  27. Let M = ( P, T, F, C in ) be an EN system. Let Definition 23. C ∈ C M , and let t ∈ T be such that t con C . Then cfl ( t, C ) = { t ′ ∈ T | t ′ con C and ¬ { t, t ′ } con C } is the conflict set of t in C . 27

  28. Definition 22. An EN system M = ( P, T, F, C in ) is conflict-free if, for every C ∈ C M and all transitions t 1 , t 2 ∈ T : { t 1 , t 2 } con C whenever t 1 con C and t 2 con C . 28

  29. p 1 c 1 e p b p 2 c 2 f c Fig. 12. Conflict-free. 29

  30. p 2 t 2 p 1 p 3 p 4 t 1 t 3 p 5 p 6 Fig. 25. A conflict-increasing confusion. 30

  31. Let M = ( P, T, F, C in ) be an EN system. Let Definition 24. C ∈ C M , and let t 1 , t 2 ∈ T . The triple ( C, t 1 , t 2 ) is called a confusion ( in C ) if 1. t 1 � = t 2 , 2. { t 1 , t 2 } con C , and 3. cfl ( t 1 , C ) � = cfl ( t 1 , D ), where C [ t 2 � D . M is confused in C if there is a confusion in C . 31

  32. p 1 p 2 t 1 t 3 t 2 p 5 p 4 p 3 Fig. 26. A conflict-decreasing confusion. 32

  33. Definition 25 Let M = ( P, T, F, C in ) be an EN system. Let C ∈ C M and t 1 , t 2 ∈ T . Let γ = ( C, t 1 , t 2 ) be a confusion and C [ t 2 � D . (1) γ is a conflict-increasing confusion , ci confusion for short, if cfl ( t 1 , D ) � cfl ( t 1 , C ). (2) γ is a conflict-decreasing confusion , cd confusion for short, if cfl ( t 1 , D ) � cfl ( t 1 , C ). 33

  34. t 2 p 2 p 1 p 4 p 3 t 3 t 1 t 4 p 5 p 6 p 7 Fig. 27. A confusion which is neither ci nor cd. 34

  35. p 1 p 3 t 1 t 2 p 4 p 2 t 4 t 3 p 5 p 6 Fig. 28. A symmetric confusion. Let M = ( P, T, F, C in ) be an EN system. Let Definition 26. C ∈ C M and t 1 , t 2 ∈ T . Let γ = ( C, t 1 , t 2 ) be a confusion. γ is symmetric if ( C, t 2 , t 1 ) is also a confusion, otherwise γ is asymmetric . 35

  36. Consider the EN system Mutex (Figure 5). Give CG(Mutex) and determine all confusions ( C, t 1 , t 2 ) with C ∈ C Mutex. Give - if possible - examples of confusions which are conflict-increasing, conflict-decreasing, neither and in addition (a)symmetric. Prove: every confusion which is not ci is symmetric. 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend