their effective physics
play

THEIR EFFECTIVE PHYSICS Denis Klevers University of Pennsylvania - PowerPoint PPT Presentation

F-THEORY FLUXES & THEIR EFFECTIVE PHYSICS Denis Klevers University of Pennsylvania "New Ideas at the Interface of Cosmology and String Theory 17 of March, 2012 Based on: T.W. Grimm, M. Poretschkin, D.K.: arXiv:1202.0285


  1. F-THEORY FLUXES & THEIR EFFECTIVE PHYSICS Denis Klevers University of Pennsylvania "New Ideas at the Interface of Cosmology and String Theory” 17 π‘’β„Ž of March, 2012 Based on: T.W. Grimm, M. Poretschkin, D.K.: arXiv:1202.0285 [hep-th]; T.W. Grimm, T.-W. Ha, A. Klemm, DK: arXiv:0912.3250 [hep-th], arXiv:0909.2025 [hep-th] .

  2. MOTIVATION F-theory describes a broad class of interesting 4d N=1 Type II string vacua β€’ N=1 SUSY gauge theory with non-abelian (GUT-)gauge group. β€’ Charged chiral matter, Yukawa couplings: Beyond SM model building. β€’ Coupling to gravity in compact geometries. β€’ Duality to heterotic string compactifications. Dynamical objects in Type IIB string theory mapped to F-theory geometry. β€’ F-theory in a Type IIB language: β€’ Inclusion of back-reacted 7-branes (D7, O7,...) with cancelled tadpoles. β€’ Type IIB with non-perturbative coupling regions on non-CY geometry. β€’ F-theory in geometric language: elliptically fibered Calabi-Yau fourfold.

  3. MOTIVATION Requirement of G-fluxes in F-theory β€’ Extra discrete degrees of freedom to specify vacuum. β€’ Required by consistency of compactification: D3-tadpole cancellation Goal of this talk: What is the 4d effective physics of G-fluxes? β€’ Induce superpotential: stabilization of some geometric moduli. β€’ Generation of 4d chirality by appropriate fluxes. β€’ back-reaction of fluxes necessary for full understanding of 4d effective physics: derivation of 7-brane gauge coupling from warping in F-theory.

  4. Introduction F-THEORY WITH FLUXES

  5. FORMULATING F-THEORY F-theory introduced as a geometric SL(2,  ) invariant formulation of Type IIB β€’ Vafa ’96; Review: Denef β€˜08 Introduce SL(2,  ) invariant geometric object: two-torus π‘ˆ 2 with β€œshape” β€’ parameter Ο„ 𝜐 1 SL(2,  ) acts as a modular transformation on Ο„ leaving π‘ˆ 2 (conformally) β€’ invariant. Ο„ ↦ π‘πœ + 𝑐 π‘‘πœ + 𝑒 𝑔𝑝𝑠 𝑏 𝑐 𝑒 ∈ 𝑇𝑀 2, β„€ 𝑑 Identify axio-dilaton of Type IIB: 𝜐 β†’ π‘ˆ 2 𝜐 . β€’ βˆ’1 Ο„ ≑ 𝐷 0 + 𝑗𝑕 𝑑 β€œSize” of π‘ˆ 2 unphysical: disregarded by formally setting vol π‘ˆ 2 ) β†’ 0 . β€’

  6. FORMULATING F-THEORY Non-trivial profile of axio-dilaton Ο„ in the presence of 7-branes. β€’ ℝ 2 Monodromy: z 𝜐 ↦ 𝜐 + 1 D7 𝜐 (z) 1 β‡’ 𝜐 𝑨 = 2πœŒβ…ˆ ln 𝑨 , , Singularity at 𝑨 = 0 . 𝜌 7-branes are global defects of space-time inducing a deficit angle 6 . β€’ Greene,Shapere,Vafa,Yau ’90; Vafa ’96 . 24 7-branes produce a deficit angle 4𝜌 : ℝ 2 compactified to 𝑇 2 . β€’ 𝜐 (z) D7 (p,q) 7 O7 𝑇 2 Tori π‘ˆ 2 Ο„) over 𝑇 2 define singular elliptically fibered Calabi-Yau twofold K3. β€’

  7. 4D F-THEORY Construct 4d F-theory vacua by replacing 𝑇 2 β†’ six-dimensional : 𝐢 6d β€’ singular K3 β†’ singular elliptic Calabi-Yau fourfold π‘Œ 4 . β€’ F-theory is non-perturbative compactification: strong coupling regions of singular at 𝑨 = 0 . Ο„ and complicated setup of 7-branes on 𝐢 6d . 7-branes are encoded in the singularities of π‘Œ 4 : Geometric description of β€’ gauge groups (Tate’s algorithm) including ADE groups. Tate ’75; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa β€˜96 Chiral matter and Yukawa couplings appear from multiple intersections of 7- β€’ branes. Katz,Vafa β€˜96

  8. FORMULATING F-THEORY β€’ Gauge theory in 8d 𝐢 6d 𝐸 4𝑒 𝐢 6𝑒 in 4𝑒 𝐸 β€’ Matter in 6d 𝐸′ 4𝑒 singular at 𝑨 = 0 . Ξ£ 2𝑒 𝐢 6d in β€’ Yukawas in 4d pt 0𝑒 𝐸 4𝑒 pt 0𝑒 𝐢 6d Ξ£ 2𝑒 in β€’ Recent advances in realistic GUT model building in F-theory based on this Donagi,Wijnholt β€˜08; Beasley,Heckman,Vafa ’08; Review: Heckman β€˜10 structure. Marsano,Saulina,SchaferNamek ’09; Blumenhagen,Grimm,Jurke,Weigand ’09

  9. PROBE-FLUXES IN F-THEORY β€’ Additional discrete degrees of freedom have be added 𝐻 4 ∈ 𝐼 4 π‘Œ 4 , β„€ . β€’ Quantized G-flux 𝐻 4 : Witten β€˜96 Sethi,Vafa,Witten β€˜96 β€’ D3-tadpole. Flux-lines π‘Œ 4 𝐻 4 𝐻 4 There are two qualitatively different fluxes on π‘Œ 4 β€’ Greene,Morrison,Plesser β€˜94 4 π‘Œ 4 , β„€ Vertical fluxes 𝐼 π‘Š 4 π‘Œ 4 , β„€ β€’ Horizontal fluxes 𝐼 𝐼 superpotential, D-term potential, moduli stablization 4d chirality, warping Goal: Understand the effect of two types of fluxes on the 4d effective action of F-theory

  10. The flux superpotential HORIZONTAL FLUXES

  11. THE FLUXSUPERPOTENTIAL The horizontal flux 𝐻 4 enters the superpotential 𝑋 Gukov,Vafa,Witten β€˜99 β€’ π»π‘Šπ‘‹ Becker,Becker β€˜96 𝑋 π»π‘Šπ‘‹ 𝑨 4 ) = 𝐻 4 ∧ Ξ© 4 𝑨 4 ) π‘Œ 4 Ξ© 4 𝑨 4 is 4,0) -form depending on complex structure moduli on π‘Œ 4 . β€’ 𝐻 4 is specified by flux quanta π‘œ 𝐡 along cycles 𝐷 𝐡 β€’ π‘Œ 4 𝐻 4 = π‘œ 𝐡 𝐷 𝐡 Ξ  𝐡 𝑨 4 ) = Ξ© 4 𝑨 4 ) 𝐻 4 𝐻 4 𝐷 𝐡 𝑋 π»π‘Šπ‘‹ is sum of periods Ξ  𝐡 𝑨 4 ) of π‘Œ 4 measuring holomorphic β€’ volumes π»π‘Šπ‘‹ 𝑨 4 = π‘œ 𝐡 Ξ  𝐡 𝑨 4 ) 𝑋 Exact calculation of 𝑋 β€’ π»π‘Šπ‘‹ possible in examples.

  12. THE FLUXSUPERPOTENTIAL A big class of F-theory fourfolds explicitly constructed as toric hypersurfaces β€’ Klemm,Lian,Roan,Yau ’97 5 π‘Œ 4 = {𝑄 = 0} in a toric variety β„™ Ξ” Mayr β€˜96 𝑋 π»π‘Šπ‘‹ 𝑨 4 ) exactly calculable: Ξ  𝑨 4 from Picard-Fuchs differential eqs. β€’ Grimm,Ha,Klemm,DK I β€˜09 β€’ Calculation of Type IIB superpotentials in weak coupling limit: flux + brane 𝐽𝐽𝐢 + 𝑋 𝐽𝐽𝐢 𝑋 π»π‘Šπ‘‹ 𝑨 4 ↦ 𝑋 π‘”π‘šπ‘£π‘¦ 7π‘π‘ π‘π‘œπ‘“ Grimm,Ha,Klemm,DK I β€˜09 Use 𝑋 π»π‘Šπ‘‹ for stabilization of complex structure moduli in F-theory and IIB. β€’ Dasgupta,Rajesh,Sethi β€˜99; Giddings,Kachru,Polchinski β€˜01; Kachru,Kallosh,Linde,Trivedi ’03; Lust,Mayr,Reffert,Stieberger ’05 𝑋 π»π‘Šπ‘‹ relevant for fourfold mirror symmetry: Generalizes N=2 prepotential. β€’ Klemm,Pandharipande β€˜07 By heterotic/F-theory duality 𝑋 π»π‘Šπ‘‹ maps to heterotic superpotentials: β€’ heterotic flux, M5-brane and vector bundle superpotential. Grimm,Ha,Klemm,DK II β€˜09

  13. Chirality and flux back-reaction VERTICAL FLUXES

  14. VERTICAL FLUXES & CHIRALITY The vertical fluxes 𝐻 4 define a D-term potential 𝒰 , 𝐾 = KΓ€hler form β€’ 𝒰 t) = 𝐻 4 ∧ 𝐾 𝑒 ∧ 𝐾 𝑒 π‘Œ 4 Haack,Louis ’01; Grimm β€˜10 𝐻 4 determines chirality of 4d matter in rep 𝑆 of gauge group 𝐻 β€’ 𝐽𝐾 πœ– 𝑒 𝐽 𝑒 𝐾 2 πœ“ 𝑺 = 𝐡 𝑺 𝒰 ≑ 𝐻 4 , 𝐷 𝑺 = β‹― … . Matter surface 𝐷 𝑺 Marsano,SchaferNameki ’11; Grimm,Hayashi β€˜11 β€’ Derivation of chirality formula in 3d N=2 theory via duality F-theory on 𝑇 1 3d M-th 𝑠𝑓𝑑 4d F-theory on π‘Œ 4 theory on π‘Œ 4 𝑂 = 1 gauge theory 𝑂 = 2 gauge theory Coulomb branch 𝐻 β†’ 𝑉 1 𝑠𝑙 𝐻) Non-abelian gauge group 𝐻 𝒰 )𝐡 𝐽 ∧ 𝐺 𝐾 2 Chiral matter in rep 𝑆 massive matter no matter, πœ– 𝑒 𝐽 𝑒 𝐾 In F-theory, a CS-Terms Θ IJ A I ∧ 𝐺 𝐾 generated at 1-loop of massive matter β€’ 𝐽𝐾 Θ 𝐽𝐾 ∼ πœ“ 𝑺 , 2 𝐡 𝑺 … . Θ 𝐽𝐾 ≑ πœ– 𝑒 𝐽 𝑒 𝐾 𝒰 ⟹ πœ“ 𝑺 = 𝐻 4 1-loop: M-theory: 𝐷 𝑺 Grimm,Hayashi ’11; Grimm, DK in progress

  15. BACKREACTED FLUXES IN F-THEORY In M-theory (=F-theory on 𝑇 1 ) G-flux 𝐻 4 back-reacts on geometry β€’ Ξ” π‘Œ 4 𝑓 3𝐡/2 =βˆ— π‘Œ 4 𝐻 4 ∧ 𝐻 4 ) Becker,Becker β€˜96; β€’ Warping: Haack,Louis β€˜01 β€’ Change of KK-ansatz by warping: non-closed 3-from 𝛾 Dasgupta,Rajesh,Sethi β€˜99; 𝐷 3 = 𝛾 + Harmonic forms Grimm,DK,Poretschkin β€˜12 Goal: 𝑦 𝐾 : TN-centers 𝑇 1 𝑇 2 β€’ Solve warp-factor equation and construct 3-form 𝛾 in local model for π‘Œ 4 . 𝑦 𝑦 2 𝑦 1 periodic β€’ Understand corrections on 4d effective physics: 7-brane gauge coupling. 𝑨

  16. BACKREACTED FLUXES IN F-THEORY Construct a local model of π‘Œ 4 for a stack of k 7-branes as follows β€’ k 7-brane stack k 6-brane stack 𝑇 1 Periodic multi-center M- on divisor 𝑇 on divisor 𝑇 T-duality theory Taub-NUT over S 𝑦 𝐾 : TN-centers 𝑇 2 𝑒 𝑦 𝑦 2 𝑦 1 periodic 𝑇 1 𝑨 Grimm,DK,Poretschkin β€˜12 Taub-NUT with k-centers is resolved 𝐡 𝑙 -singularity: 𝑙 resolving 𝑇 2 = β€’ = SU(k) gauge group of k 7-branes.

  17. PERIODIC TAUB-NUT FOR F-THEORY β€’ Explicit construction of metric on periodic Taub-NUT: 𝑒𝑑 2 = 1 π‘Š 𝑒𝑒 + 𝑉 2 + π‘Šπ‘’π‘  2 , 𝑠 ∈ ℝ 3 Gibbons-Hawking: 𝑙 𝑙 π‘Š = 1 + π‘Š , 𝑉 = 𝑉 𝐽 , π‘’π‘Š 𝐽 =βˆ— 3 𝑒𝑉 𝐽 𝐽 𝐽=1 𝐽=1 π‘Š β€’ 𝐽 explicitly constructed as infinite series π‘Š 𝐽 = log 𝑨 βˆ’ 𝐿 0 2𝜌 𝑨 π‘œ cos 2πœŒπ‘œ 𝑦 βˆ’ 𝑦 𝐽 ) π‘œ>0 Ooguri,Vafa’96 Identification along periodic direction 𝑦 yields elliptic fibration of F-theory π‘Œ 4 β€’ 𝑒𝑑 2 = 𝑀 0 𝑒𝑒 + 𝑆𝑓 πœπ‘’π‘¦ 2 + 𝐽𝑛 πœπ‘’π‘¦ 2 + 𝑒𝑑 ℝ 2 ×𝑇 𝐽𝑛 𝜐 𝜐 𝑨 = 𝜐 0 + 𝑙 Leading axio-dilaton: 2πœŒπ‘— log 𝑨 + β‹― Recover familiar form of 𝜐 𝑨) for k D7-branes + new corrections. β€’ Grimm,DK,Poretschkin β€˜12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend