the zeta function of the root system of type g 2 kohji
play

The zeta-function of the root system of type G 2 Kohji Matsumoto - PowerPoint PPT Presentation

The zeta-function of the root system of type G 2 Kohji Matsumoto (Nagoya University) (a joint work with Y.Komori and H.Tsumura) 1 V : r -dimensional real vector space , : inner product defined on V : finite reduced root system in V


  1. The zeta-function of the root system of type G 2 Kohji Matsumoto (Nagoya University) (a joint work with Y.Komori and H.Tsumura) 1

  2. V : r -dimensional real vector space � , � : inner product defined on V ∆ : finite reduced root system in V ∆ = ∆ + ∪ ∆ − Ψ = { α 1 , . . . , α r } : fundamental system { λ 1 , . . . , λ r } : fundamental weights (with � α ∨ i , λ j � = δ ij ) P ++ = ⊕ r i =1 N λ i ( N = Z ≥ 1 ) Define the zeta-function of ∆ by 1 ∑ ∏ ζ r ( s , ∆) = � α ∨ , λ � s α λ ∈ P ++ α ∈ ∆ + where s = ( s α ) α ∈ ∆ + ∈ C n , n = | ∆ + | . 2

  3. Examples. Ex 1. ∆ = A 1 ⇒ ∆ + = { α 1 } , P ++ = { mλ 1 | m ∈ N } , 1 , λ � − s = ∑ ∞ m =1 m − s = ζ ( s ) λ ∈ P ++ � α ∨ ⇒ ζ 1 ( s, A 1 ) = ∑ (the Riemann zeta-function) Ex 2. ∆ = A 2 ⇒ ∆ + = { α 1 , α 2 , α 1 + α 2 } , P ++ = { m 1 λ 1 + m 2 λ 2 | m 1 , m 2 ∈ N } , Therefore ∞ ∞ 1 m − s 1 m − s 2 ( m 1 + m 2 ) − s 3 ∑ ∏ ∑ ∑ ζ 2 ( s, A 2 ) = � α ∨ , λ � s α = 1 2 λ ∈ P ++ α ∈ ∆ + m 1 =1 m 2 =1 (the Tornheim double sum) 3

  4. Ex 3. The case s = ( s, s, . . . , s ) g : a semisimple Lie algebra over C ∆ = ∆( g ) ϕ (dim ϕ ) − s Witten zeta-function : ζ W ( s, g ) = ∑ ( ϕ runs over all finite dim irreducible representation of g ) By Weyl’s dimension formula we have ζ W ( s, g ) ∞ ∞ ) − s ( � α ∨ , m 1 λ 1 + · · · + m r λ r � ∑ ∑ ∏ · · · = � α ∨ , λ 1 + · · · + λ r � m 1 =1 m r =1 α ∈ ∆ + s   � α ∨ , λ 1 + · · · + λ r �  ∏ = ζ r (( s, s, . . . , s ) , ∆( g ))  α ∈ ∆ + 4

  5. Ex 4. The Euler-Hoffman-Zagier multiple sum ∞ ∞ n − s 1 ( n 1 + n 2 ) − s 2 · · · ( n 1 + · · · + n r ) − s r ∑ ∑ · · · ζ EHZ,r ( s ) = 1 n 1 =1 n r =1 This can be regarded as a zeta-function of the root system of type C r , which is NOT simply-laced. ∆ + = ∆ l + ∪ ∆ s + ( l : long roots, s : short roots) s l = ( s α ) α ∈ ∆ + , with s α = 0 for any α ∈ ∆ s + Then we find ζ r ( s l , C r ) = ζ EHZ,r ( s ) (It is also possible to understand ζ EHZ,r ( s ) as a zeta-function of the root system of type A r ; cf. Komori-M-Tsumura, Math. Z. 268 (2011)) 5

  6. Special values (at positive integer points) The study of special values is important for both Witten zeta-functions and Euler-Hoffman-Zagier sums ⇒ How are the special values of zeta-functions of root systems? Recall : Witten’s volume formula (coonected with the volumes of certain moduli spaces appearing in quantum gauge theory) ζ W (2 k, g ) = C W (2 k, g ) π 2 kn for k ∈ N , where n = | ∆ + | and C W (2 k, g ) ∈ Q What is the explicit value of C W (2 k, g )? 6

  7. 1. A 1 case (the Riemann zeta) ζ (2) = π 2 / 6 , ζ (4) = π 4 / 90 , . . . That is, C W (2 , A 1 ) = 1 / 6 , C W (4 , A 1 ) = 1 / 90 , . . . 2. A 2 case (the Tornheim sum) ζ W ( s, A 2 ) = 2 s ζ 2 (( s, s, s ) , ∆( A 2 )) and Mordell proved ζ 2 ((2 , 2 , 2) , A 2 ) = π 6 / 2835 ⇒ C W (2 , A 2 ) = 4 / 2835 Algorithm of computing C W (2 k, g ) for general case: Szenes (1998), Gunnells-Sczech (2003), Our approach (Around 2005 − ) 7

  8. W = W (∆) : The Weyl group of ∆ Define   ( − 1) − s α  ζ r ( w − 1 s , ∆) , ∑ ∏ S ( s , ∆) =  w ∈ W α ∈ ∆ + ∩ w ∆ − where w − 1 s is defined by ( σ β s ) α = s σ β α for the reflection σ β with respect to (the hyperplane orthogonal to) β (If σ β α ∈ ∆ − , then we understand that s σ β α = s − σ β α ) S ( s , ∆) is the “Weyl group symmetric linear combination” of ζ r ( s , ∆) ⇒ can be expressed as a certain multiple integral involving a product of Lerch-type zeta-functions 8

  9. ⇒ When s = k = ( k α ) α ∈ ∆ + ( k α ∈ N ), we have (2 π √− 1) k α   S ( k , ∆) = ( − 1) n  ∏  B k (∆) k α ! α ∈ ∆ + ( B k (∆) : a “root-theoretic” generalization of Bernoulli numbers) In particular, if k α = k β whenever || α || = || β || , then w − 1 k = k , so   ( − 1) − 2 k α  ζ r ( w − 1 2 k , ∆) ∑ ∏ S (2 k , ∆) =  w ∈ W α ∈ ∆ + ∩ w ∆ − ∑ = ζ r (2 k , ∆) = | W | ζ r (2 k , ∆) , and hence w ∈ W (2 π √− 1) 2 k α   ζ r (2 k , ∆) = ( − 1) n  ∏  B 2 k (∆) | W | (2 k α )! α ∈ ∆ + 9

  10. B k (∆) can be calculated via its generating function t k α α ∑ ∏ F ( t , ∆) = B k (∆) ( t = ( t α ) α ∈ ∆ + ) k α ! α ∈ ∆ + k Example: t F ( t, A 1 ) = (classical case) e t − 1 F (( t 1 , t 2 , t 3 ) , A 2 ) t 1 t 2 t 3 e t 1 + t 2 ( e t 3 − t 1 − t 2 − 1) = ( e t 1 − 1)( e t 2 − 1)( e t 3 − 1)( t 3 − t 1 − t 2 ) Now we consider our main target : type G 2 10

  11. Type G 2 : Ψ = { α 1 , α 2 } ∆ + = { α 1 , α 2 , α 1 + α 2 , 2 α 1 + α 2 , 3 α 1 + α 2 , 3 α 1 + 2 α 2 } P ++ = { mλ 1 + nλ 2 | m, n ∈ N } Therefore ζ 2 ( s , G 2 ) = ζ 2 (( s 1 , s 2 , s 3 , s 4 , s 5 , s 6 ) , G 2 ) ∞ ∞ m − s 1 n − s 2 ( m + n ) − s 3 ( m + 2 n ) − s 4 ∑ ∑ = m =1 n =1 × ( m + 3 n ) − s 5 (2 m + 3 n ) − s 6 Now compute the generating function F (( t 1 , t 2 , t 3 , t 4 , t 5 , t 6 ) , G 2 ) of the Bernoulli numbers B k ( G 2 ) : 11

  12. F (( t 1 , t 2 , t 3 , t 4 , t 5 , t 6 ) , G 2 ) = t 1 t 2 t 3 t 4 t 5 t 6 ( 1 ( e t 1 − 1)( e t 2 − 1)( t 1 + t 2 − t 3 ) − 1 ( t 1 + 2 t 2 − t 4 ) − 1 × × ( t 1 + 3 t 2 − t 5 ) − 1 (2 t 1 + 3 t 2 − t 6 ) − 1 1 ( e t 1 − 1)( e t 3 − 1)( t 1 + t 2 − t 3 ) − 1 ( t 1 − 2 t 3 + t 4 ) − 1 + × (2 t 1 − 3 t 3 + t 5 ) − 1 ( t 1 − 3 t 3 + t 6 ) − 1 e t 1 / 2+ t 4 / 2 + 1 2( e t 1 − 1)( e t 4 − 1)( t 1 / 2 + t 2 − t 4 / 2) − 1 ( t 1 / 2 − t 3 + t 4 / 2) − 1 + × ( t 1 / 2 − 3 t 4 / 2 + t 5 ) − 1 ( t 1 / 2 + 3 t 4 / 2 − t 6 ) − 1 − e 2 t 1 / 3+ t 5 / 3 + e t 1 / 3+2 t 5 / 3 + 1 ( t 1 / 3 − t 4 + 2 t 5 / 3) − 1 3( e t 1 − 1)( e t 5 − 1) × ( t 1 / 3 + t 2 − t 5 / 3) − 1 (2 t 1 / 3 − t 3 + t 5 / 3) − 1 ( t 1 + t 5 − t 6 ) − 1 12

  13. − e t 1 / 3+ t 6 / 3 + e 2 t 1 / 3+2 t 6 / 3 + 1 ( t 1 + t 5 − t 6 ) − 1 3( e t 1 − 1)( e t 6 − 1) × ( t 1 / 3 + t 4 − 2 t 6 / 3) − 1 (2 t 1 / 3 + t 2 − t 6 / 3) − 1 ( t 1 / 3 − t 3 + t 6 / 3) − 1 e t 2 ( e t 2 − 1)( e t 3 − 1)( t 1 + t 2 − t 3 ) − 1 ( t 2 + t 3 − t 4 ) − 1 − × (2 t 2 + t 3 − t 5 ) − 1 ( t 2 + 2 t 3 − t 6 ) − 1 e t 2 ( e t 2 − 1)( e t 4 − 1)( t 1 + 2 t 2 − t 4 ) − 1 ( t 2 + t 3 − t 4 ) − 1 − × ( t 2 + t 4 − t 5 ) − 1 ( t 2 − 2 t 4 + t 6 ) − 1 e t 2 ( e t 2 − 1)( e t 5 − 1)( t 1 + 3 t 2 − t 5 ) − 1 (2 t 2 + t 3 − t 5 ) − 1 + × ( t 2 + t 4 − t 5 ) − 1 (3 t 2 − 2 t 5 + t 6 ) − 1 13

  14. + e t 2 / 2+ t 6 / 2 + e t 2 2( e t 2 − 1)( e t 6 − 1)( t 1 + 3 t 2 / 2 − t 6 / 2) − 1 × ( t 2 / 2 + t 3 − t 6 / 2) − 1 ( t 2 / 2 − t 4 + t 6 / 2) − 1 (3 t 2 / 2 − t 5 + t 6 / 2) − 1 e t 4 ( e t 3 − 1)( e t 4 − 1)( t 2 + t 3 − t 4 ) − 1 ( t 1 − 2 t 3 + t 4 ) − 1 − × ( t 3 − 2 t 4 + t 5 ) − 1 ( t 3 + t 4 − t 6 ) − 1 e t 5 2( e t 3 − 1)( e t 5 − 1)( t 2 + t 3 / 2 − t 5 / 2) − 1 ( t 3 / 2 − t 4 + t 5 / 2) − 1 + × ( t 1 − 3 t 3 / 2 + t 5 / 2) − 1 (3 t 3 / 2 + t 5 / 2 − t 6 ) − 1 e t 6 ( e t 3 − 1)( e t 6 − 1)(3 t 3 + t 5 − 2 t 6 ) − 1 ( t 2 + 2 t 3 − t 6 ) − 1 + × ( t 3 + t 4 − t 6 ) − 1 ( t 1 − 3 t 3 + t 6 ) − 1 14

  15. e t 5 ( e t 4 − 1)( e t 5 − 1)( t 2 + t 4 − t 5 ) − 1 ( t 3 − 2 t 4 + t 5 ) − 1 − × ( t 1 − 3 t 4 + 2 t 5 ) − 1 (3 t 4 − t 5 − t 6 ) − 1 e t 4 ( e t 4 − 1)( e t 6 − 1)( t 1 + 3 t 4 − 2 t 6 ) − 1 ( t 3 + t 4 − t 6 ) − 1 − × ( t 2 − 2 t 4 + t 6 ) − 1 (3 t 4 − t 5 − t 6 ) − 1 + e t 5 + e 2 t 5 / 3+2 t 6 / 3 + e t 5 / 3+ t 6 / 3 ( t 1 + t 5 − t 6 ) − 1 3( e t 5 − 1)( e t 6 − 1) ) × ( t 3 + t 5 / 3 − 2 t 6 / 3) − 1 ( t 4 − t 5 / 3 − t 6 / 3) − 1 ( t 2 − 2 t 5 / 3 + t 6 / 3) − 1 From this explicit form of the generating function, we can calculate the special values of ζ 2 ( s , G 2 ) 15

  16. 23 297904566960 π 12 ζ 2 ((2 , 2 , 2 , 2 , 2 , 2) , G 2 ) = 8165653 1445838676129559305994400000 π 24 ζ 2 ((4 , 4 , 4 , 4 , 4 , 4) , G 2 ) = ζ 2 ((6 , 6 , 6 , 6 , 6 , 6) , G 2 ) 55940539974690617 131888156302530666544150214880458495963616000000 π 36 = Also (since our condition is k α = k β for || α || = || β || ) we have 467 213955059990672000 π 18 ζ 2 ((2 , 4 , 4 , 4 , 2 , 2) , G 2 ) = 16

  17. How to evaluate the values at “odd” integer points? Recall :   ( − 1) − k α  ζ r ( w − 1 k , G 2 ) ∑ ∏ S ( k , G 2 ) =  w ∈ W α ∈ ∆ + ∩ w ∆ − When k α is odd, the signature part appears. For G 2 , it is well-known that | W | = 12, and it is easy to see that | ∆ + ∩ w ∆ − | is odd for 6 elements of W and is even for the other 6 elements of W . Therefore, when k = ( k, k, k, k, k, k ) for some odd positive integer k , all terms on the right-hand side of the above equation are cancelled, and we obtain NO information. 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend