the next generation beam neutron lifetime experiment
play

The Next Generation Beam Neutron Lifetime Experiment F . E. - PowerPoint PPT Presentation

The Next Generation Beam Neutron Lifetime Experiment F . E. Wietfeldt Tulane University Our Plan Based on Sussex-ILL-NIST beam neutron lifetime program using quasi-Penning proton trap. More than 30 years experience with this program; many


  1. The Next Generation Beam Neutron Lifetime Experiment F . E. Wietfeldt Tulane University

  2. Our Plan Based on Sussex-ILL-NIST beam neutron lifetime program using quasi-Penning proton trap. More than 30 years experience with this program; many systematics thoroughly studied and understood.

  3. Our Plan Based on Sussex-ILL-NIST beam neutron lifetime program using quasi-Penning proton trap. More than 30 years experience with this program; many systematics thoroughly studied and understood. Goal #1: Further explore, cross check, and reduce all systematic uncertainties to the 10 level -4

  4. Our Plan Based on Sussex-ILL-NIST beam neutron lifetime program using quasi-Penning proton trap. More than 30 years experience with this program; many systematics thoroughly studied and understood. Goal #1: Further explore, cross check, and reduce all systematic uncertainties to the 10 level -4 Goal #2: Reduce the neutron lifetime uncertainty, using the beam method, to < 0.2 s

  5. Brief Review of the 2005 NIST Beam Neutron Lifetime Experiment and 2013 Update

  6. Brief Review of the 2005 NIST Beam Neutron Lifetime Experiment and 2013 Update Z φ ( v ) A beam L det proton counting rate: R p = ε p v dv τ n Z φ ( v ) neutron counting rate: R n = ε th A beam v th v dv

  7. Brief Review of the 2005 NIST Beam Neutron Lifetime Experiment and 2013 Update Z φ ( v ) A beam L det proton counting rate: R p = ε p v dv τ n = R n ε p L det τ n R p ε th v th Z φ ( v ) neutron counting rate: R n = ε th A beam v th v dv

  8. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V)

  9. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det R p ε th v th

  10. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det L det = nl + L end R p ε th v th

  11. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det L det = nl + L end R p ε th v th # trap electrodes

  12. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det L det = nl + L end R p ε th v th # trap electrodes length of � electrode + spacer

  13. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det L det = nl + L end R p ε th v th total effective � # trap electrodes end region length length of � electrode + spacer

  14. alpha, triton detector precision proton B = 4.6 T aperture detector neutron beam 6 Li mirror trap electrodes door closed deposit (+800 V) (+800 V) τ = R n ε p L det L det = nl + L end R p ε th v th total effective � # trap electrodes end region length length of � electrode + spacer ε p ⎛ ⎞ R p ( ) = τ − 1 ⎟ nl + L end ⎜ ε th v th ⎝ ⎠ R n

  15. Proton Trap

  16. 1000 Prot oton on Pulse Height Sp Spectrum 2 Au) (32.5 ( .5 kV; 2 kV; 20 µ µg/cm /cm Au) 100 Counts 10 32.5 keV 1 0 100 200 300 400 500 600 ADC Channel (7.47 ch. = 1 keV)

  17. Proton Arrival Time Spectrum 1000 2 Au) (32.5 kV; 20 µg/cm 3 Electrodes 4 Electrodes 100 5 Electrodes Counts 6 Electrodes 7 Electrodes 8 Electrodes 9 Electrodes 10 Electrodes 10 1 0 100 200 300 400 500 TDC Channel (6.25 ch/µs)

  18. -3 4.0x10 Nor orma malized Prot oton on Cou ounts vs. Trap Length 2 Au) ( (32.5 .5 kV; 2 kV; 20 µ µg/cm /cm Au) 3.5 Proton-Bkdg/Alpha 3.0 2.5 2.0 1.5 2 3 4 5 6 7 8 9 10 11 Electrode Number Fit of R p 40 vs . number 20 R n Residuals 0 trap electrodes -20 -6 -40x10 2 3 4 5 6 7 8 9 10 11 Electrode Number 40 20 Residuals 0 -20 -6 -40x10 12:00 AM 12:00 AM 12:00 AM 12:00 AM 12:00 AM 9/29/00 9/30/00 10/1/00 10/2/00 10/3/00 Date/Time

  19. Lifetime vs. Backscatter 910 905 extrapolated result 886.8 ± 1.2 s measured lifetime (s) 900 (stat. error only) 895 27.5 kV 890 30 kV 32.5 kV 885 880 -3 0 5 10 15 20 25 30x10 backscatter fraction

  20. 1/v neutron counter

  21. 1/v neutron counter neutron detection efficiency: ε th = σ th ( ) ( ) θ x , y ( ) dxdy ∫ ∫ Ω x , y ρ x , y 4 π

  22. 1/v neutron counter neutron detection efficiency: ε th = σ th ( ) ( ) θ x , y ( ) dxdy ∫ ∫ Ω x , y ρ x , y 4 π Si detector solid angle

  23. 1/v neutron counter neutron detection efficiency: ε th = σ th ( ) ( ) θ x , y ( ) dxdy ∫ ∫ Ω x , y ρ x , y 4 π Si detector solid angle areal density of Li foil

  24. 1/v neutron counter neutron detection efficiency: ε th = σ th ( ) ( ) θ x , y ( ) dxdy ∫ ∫ Ω x , y ρ x , y 4 π Si detector solid angle neutron beam density areal density of Li foil

  25. J. S. NICO et al. PHYSICAL REVIEW C 71 , 055502 (2005) Error Budget Source of correction Correction (s) Uncertainty (s) 6 LiF deposit areal density 2.2 6 Li cross section 1.2 Neutron detector solid angle 1.0 Absorption of neutrons by 6 Li + 5.2 0.8 Neutron beam profile and detector solid angle + 1.3 0.1 Neutron beam profile and 6 Li deposit shape − 1.7 0.1 Neutron beam halo − 1.0 1.0 Absorption of neutrons by Si substrate + 1.2 0.1 Scattering of neutrons by Si substrate − 0.2 0.5 Trap nonlinearity − 5.3 0.8 Proton backscatter calculation 0.4 Neutron counting dead time + 0.1 0.1 Proton counting statistics 1.2 Neutron counting statistics 0.1 Total − 0.4 3.4 2005: τ = 886.3 ± 3.4 s n

  26. J. S. NICO et al. PHYSICAL REVIEW C 71 , 055502 (2005) Error Budget Source of correction Correction (s) Uncertainty (s) can be significantly 6 LiF deposit areal density 2.2 reduced by an 6 Li cross section 1.2 absolute calibration Neutron detector solid angle 1.0 of the Absorption of neutrons by 6 Li + 5.2 0.8 1/v neutron counter Neutron beam profile and detector solid angle + 1.3 0.1 Neutron beam profile and 6 Li deposit shape − 1.7 0.1 Neutron beam halo − 1.0 1.0 Absorption of neutrons by Si substrate + 1.2 0.1 Scattering of neutrons by Si substrate − 0.2 0.5 Trap nonlinearity − 5.3 0.8 Proton backscatter calculation 0.4 Neutron counting dead time + 0.1 0.1 Proton counting statistics 1.2 Neutron counting statistics 0.1 Total − 0.4 3.4 2005: τ = 886.3 ± 3.4 s n

  27. Absolute neutron flux measurement to < 0.1% precision The Alpha-Gamma device HPGe detector • 10 B alpha-gamma device Totally absorbing 10 B target foil Neutron fluence monitor now working at NIST Monochromatic neutron beam 0.06% precision recently achieved! (Andrew Yue, NIST) PIPS detector with aperture HPGe detector Alpha-Gamma device • 3 He gas scintillation chamber (Tulane, NIST) - in construction/testing • neutron radiometer (Indiana, Michigan) - under development

  28. Absolute neutron flux measurement to < 0.1% precision The Alpha-Gamma device HPGe detector • 10 B alpha-gamma device Totally absorbing 10 B target foil Neutron fluence monitor now working at NIST Monochromatic neutron beam 0.06% precision recently achieved! (Andrew Yue, NIST) PIPS detector with aperture 2013 improved result: HPGe detector Alpha-Gamma device τ = 887 .7 ± 2.3 s n • 3 He gas scintillation chamber (Tulane, NIST) - in construction/testing • neutron radiometer (Indiana, Michigan) - under development

  29. 900 neutron lifetime results since 1990 895 890 neutron lifetime (s) τ n = 888.0 ± 2.1 s 885 880 τ n = 879.6 ± 0.6 s 875 beam method UCN bottle 870 1990 1995 2000 2005 2010 2015 year

  30. BEAM NEUTRON LIFETIME THE NEXT GENERATION

  31. 2005 Error Budget Source of correction Correction (s) Uncertainty (s) 6 LiF deposit areal density 2.2 6 Li cross section 1.2 Neutron detector solid angle 1.0 Absorption of neutrons by 6 Li + 5.2 0.8 Neutron beam profile and detector solid angle + 1.3 0.1 Neutron beam profile and 6 Li deposit shape − 1.7 0.1 Neutron beam halo − 1.0 1.0 Absorption of neutrons by Si substrate + 1.2 0.1 Scattering of neutrons by Si substrate − 0.2 0.5 Trap nonlinearity − 5.3 0.8 Proton backscatter calculation 0.4 Neutron counting dead time + 0.1 0.1 Proton counting statistics 1.2 Neutron counting statistics 0.1 Total − 0.4 3.4

  32. 2005 Error Budget Source of correction Correction (s) Uncertainty (s) 6 LiF deposit areal density 2.2 6 Li cross section 1.2 neutron Neutron detector solid angle 1.0 counting Absorption of neutrons by 6 Li + 5.2 0.8 Neutron beam profile and detector solid angle + 1.3 0.1 Neutron beam profile and 6 Li deposit shape − 1.7 0.1 Neutron beam halo − 1.0 1.0 Absorption of neutrons by Si substrate + 1.2 0.1 Scattering of neutrons by Si substrate − 0.2 0.5 Trap nonlinearity − 5.3 0.8 Proton backscatter calculation 0.4 Neutron counting dead time + 0.1 0.1 Proton counting statistics 1.2 Neutron counting statistics 0.1 Total − 0.4 3.4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend