the local hamiltonian problem
play

the local Hamiltonian problem Thomas Vidick Caltech Joint work - PowerPoint PPT Presentation

A multiprover interactive proof system for the local Hamiltonian problem Thomas Vidick Caltech Joint work with Joseph Fitzsimons SUTD and CQT, Singapore Outline 1. Local verification of classical & quantum proofs 2. Quantum multiplayer


  1. A multiprover interactive proof system for the local Hamiltonian problem Thomas Vidick Caltech Joint work with Joseph Fitzsimons SUTD and CQT, Singapore

  2. Outline 1. Local verification of classical & quantum proofs 2. Quantum multiplayer games 3. Result: a game for the local Hamiltonian problem 4. Consequences: a) The quantum PCP conjecture b) Quantum interactive proof systems

  3. Local verification of classical proofs β€’ NP = { decision problems β€œdoes 𝑦 have property 𝑄? ” that have polynomial-time verifiable proofs } β€’ Ex: Clique, chromatic number, Hamiltonian path β€’ 3D Ising spin β€’ Pancake sorting, Modal logic S5-Satisfiability, Super Mario, Lemmings β€’ Cook-Levin theorem: 3-SAT is complete for NP Graph 𝐻 β†’ 3 -SAT formula πœ’ 𝐻 3-colorable ⇔ πœ’ satisfiable β€’ Consequence: all problems in NP have local verification procedures 0 1 0 1 0 1 0 1 1 1 1 0 β€’ Do we even need 0 the whole proof? 𝑦 8 ? 0 0 𝑦 5 ? 𝐷 10 𝑦 = 𝑦 3 ∨ 𝑦 5 ∨ 𝑦 8 ? 𝑦 3 ? β€’ Proof required to guarantee consistency of assignment βˆƒπ‘¦, πœ’ 𝑦 = 𝐷 1 𝑦 ∧ 𝐷 2 𝑦 ∧ β‹― ∧ 𝐷 𝑛 𝑦 = 1? Is 𝐻 3-colorable?

  4. Multiplayer games: the power of two Merlins 0 1 0 1 0 1 0 1 β€’ Arthur (β€œreferee”) asks questions β€’ Two isolated Merlins (β€œplayers”) 0,0,0 1 β€’ Arthur checks answers. 𝐷 10 ? 𝑦 8 ? β€’ Value πœ• 𝐻 = sup Merlins Pr[Arthur accepts] β€’ Ex: 3-SAT game 𝐻 = 𝐻 πœ’ 𝐷 10 𝑦 = 𝑦 3 ∨ 𝑦 5 ∨ 𝑦 8 ? check satisfaction + consistency βˆƒπ‘¦, πœ’ 𝑦 = 𝐷 1 𝑦 ∧ 𝐷 2 𝑦 ∧ β‹― ∧ 𝐷 𝑛 𝑦 = 1? πœ’ SAT ⇔ πœ• 𝐻 πœ’ = 1 β€’ Consequence: All languages in NP have truly local verification procedure β€’ PCP Theorem: poly-time 𝐻 πœ’ β†’ 𝐻 πœ’ such that πœ• 𝐻 πœ’ = 1 ⟹ πœ• 𝐻 πœ’ = 1 πœ• 𝐻 πœ’ < 1 ⟹ πœ• 𝐻 πœ’ ≀ 0.9

  5. Local verification of quantum proofs β€’ QMA = { decision problems β€œdoes 𝑦 have property 𝑄 ” that have quantum polynomial-time verifiable quantum proofs } β€’ Ex: quantum circuit-sat, unitary non-identity check β€’ Consistency of local density matrices, N-representability β€’ [Kitaev’99,Kempe - Regev’03] 3-local Hamiltonian is complete for QMA 𝐼 = 𝑗 𝐼 𝑗 , each 𝐼 𝑗 acts on 3 out of π‘œ qubits. Decide: βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ ≀ 𝑏 = 2 βˆ’π‘ž π‘œ , or βˆ€|Ξ¦βŒͺ , Ξ¦ 𝐼 Ξ¦ β‰₯ 𝑐 = 1/π‘Ÿ(π‘œ) ? |πœ”βŒͺ β€’ Still need Merlin to provide complete state βŒ©Ξ“|𝐼 10 |Ξ“βŒͺ ? β€’ Today: is β€œtruly local” verification of QMA problems possible? Is 𝑉 βˆ’ 𝑓 π‘—πœ’ Id > πœ€ ? βˆƒ Ξ“ , Ξ“ 𝐼 1 Ξ“ + β‹― βŒ©Ξ“|𝐼 𝑛 Ξ“ ≀ 𝑏?

  6. Outline 1. Local verification of classical & quantum proofs 2. Quantum multiplayer games 3. Result: a game for the local Hamiltonian problem 4. Consequences: a) The quantum PCP conjecture b) Quantum interactive proof systems

  7. Quantum multiplayer games β€’ Quantum Arthur exchanges quantum messages with quantum Merlins Quantum Merlins may use shared entanglement β€’ Value πœ• βˆ— 𝐻 = sup Merlins Pr[Arthur accepts] Measure Ξ  = {Ξ  𝑏𝑑𝑑 , Ξ  π‘ π‘“π‘˜ } β€’ Quantum messages β†’ more power to Arthur [KobMat’03 ] Quantum Arthur with non-entangled Merlins limited to NP β€’ Entanglement β†’ more power to Merlins… and to Arthur? β€’ Can Arthur use entangled Merlins to his advantage?

  8. The power of entangled Merlins (1) The clause-vs-variable game 0,0,0 β€’ No entanglement: 1 πœ• 𝐻 πœ’ = 1 ⇔ πœ’ SAT 𝐷 10 ? 𝑦 8 ? β€’ Magic Square game: βˆƒ 3-SAT πœ’ , πœ’ UNSAT but πœ• βˆ— 𝐻 πœ’ = 1! 𝐷 10 𝑦 = 𝑦 3 ∨ 𝑦 5 ∨ 𝑦 8 ? βˆƒπ‘¦, πœ’ 𝑦 = 𝐷 1 𝑦 ∧ 𝐷 2 𝑦 ∧ β‹― ∧ 𝐷 𝑛 𝑦 = 1? β€’ Not a surprise: πœ• βˆ— 𝐻 ≫ πœ• 𝐻 is nothing else than Bell inequality violation 𝐻 πœ’ s.t. πœ’ SAT ⇔ πœ• βˆ— β€’ [KKMTV’08,IKM’09] More complicated πœ’ β†’ 𝐻 πœ’ = 1 β†’ Arthur can still use entangled Merlins to decide problems in NP β€’ Can Arthur use entangled Merlins to decide QMA problems?

  9. The power of entangled Merlins (2) A Hamiltonian-vs-qubit game? β€’ Given 𝐼 , can we design 𝐻 = 𝐻 𝐼 s.t.: β‡’ πœ• βˆ— 𝐻 β‰ˆ 1 βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ ≀ 𝑏 𝐼 10 ? π‘Ÿ 8 ? βˆ€|Ξ¦βŒͺ , Ξ¦ 𝐼 Ξ¦ β‰₯ 𝑐 β‡’ πœ• βˆ— 𝐻 β‰ͺ 1 β€’ Some immediate difficulties: βŒ©Ξ“|𝐼 10 |Ξ“βŒͺ ? β€’ Cannot check for equality βˆƒ Ξ“ , Ξ“ 𝐼 1 Ξ“ + β‹― βŒ©Ξ“|𝐼 𝑛 Ξ“ ≀ 𝑏? of reduced densities β€’ Local consistency ⇏ global consistency (deciding whether this holds is itself a QMA-complete problem) β€’ [KobMat03] Need to use entanglement to go beyond NP β€’ Idea: split proof qubits between Merlins

  10. The power of entangled Merlins (2) A Hamiltonian-vs-qubit game? 𝐼 5 𝐼 4 β€’ [ AGIK’09] Assume 𝐼 is 1D π‘Ÿ 4 ? π‘Ÿ 3 ? π‘Ÿ 5 ? 𝐼 4 𝐼 2 𝐼 π‘œβˆ’1 𝐼 1 𝐼 3 + + + + + + β€’ Merlin 1 takes even qubits, βŒ©Ξ“|𝐼 4 |Ξ“βŒͺ ? βŒ©Ξ“|𝐼 5 |Ξ“βŒͺ ? Merlin 2 takes odd qubits βˆƒ Ξ“ , Ξ“ 𝐼 1 Ξ“ + β‹― βŒ©Ξ“|𝐼 𝑛 Ξ“ ≀ 𝑏? β€’ πœ• βˆ— 𝐻 𝐼 = 1 β‡’ βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ β‰ˆ 0 ? β€’ Bad example: the EPR Hamiltonian 𝐼 𝑗 = 𝐹𝑄𝑆 βŒ©πΉπ‘„π‘†| 𝑗,𝑗+1 for all 𝑗 + + + + + + β€’ Highly frustrated, but πœ• βˆ— 𝐻 𝐼 = 1 !

  11. The difficulty ?

  12. The difficulty ? Can we check existence of global state |Ξ“βŒͺ from β€œlocal snapshots” only?

  13. Outline 1. Checking proofs locally 2. Entanglement in quantum multiplayer games 3. Result: a quantum multiplayer game for the local Hamiltonian problem 4. Consequences: 1. The quantum PCP conjecture 2. Quantum interactive proof systems

  14. Result: a five-player game for LH Given 3-local 𝐼 on π‘œ qubits, design 5-player 𝐻 = 𝐻 𝐼 such that: β‡’ πœ• βˆ— 𝐻 β‰₯ 1 βˆ’ 𝑏/2 β€’ βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ ≀ 𝑏 β€’ βˆ€|Ξ¦βŒͺ , Ξ¦ 𝐼 Ξ¦ β‰₯ 𝑐 β‡’ πœ• βˆ— 𝐻 ≀ 1 βˆ’ 𝑐/π‘œ 𝑑 𝑗, π‘˜, 𝑙 ? 𝑗′, π‘˜β€², 𝑙′ ? β€’ Consequence: the value πœ• βˆ— 𝐻 for 𝐻 with π‘œ classical questions, 3 answer qubits, 5 players, is 𝑅𝑁𝐡 -hard to compute to within Β±1/π‘žπ‘π‘šπ‘§(π‘œ) β†’ Strictly harder than non -entangled value πœ•(𝐻) (unless NP=QMA) β€’ Consequence: 𝑅𝑁𝐽𝑄 ⊊ 𝑅𝑁𝐽𝑄 βˆ— 1 βˆ’ 2 βˆ’π‘ž , 1 βˆ’ 2 β‹… 2 βˆ’π‘ž (unless π‘‚πΉπ‘Œπ‘„ = 𝑅𝑁𝐡 πΉπ‘Œπ‘„ )

  15. |Ξ“βŒͺ The game 𝐻 = 𝐻 𝐼 πΉπ‘œπ‘‘ β€’ ECC 𝐹 corrects β‰₯ 1 error (ex: 5 -qubit Steane code) β€’ Arthur runs two tests (prob 1/2 each): π‘Ÿ 5 π‘Ÿ 3 , π‘Ÿ 5 , π‘Ÿ 8 π‘Ÿ 5 Select random 𝐼 β„“ on π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 1. a) Ask each Merlin for its share of π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 b) Decode 𝐹 π‘Ÿ 5 βŒ©Ξ“|𝐼 10 |Ξ“βŒͺ ? c) Measure 𝐼 β„“ βˆƒ Ξ“ , Ξ“ 𝐼 1 Ξ“ + β‹― βŒ©Ξ“|𝐼 𝑛 Ξ“ ≀ 𝑏? Select random 𝐼 β„“ on π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 2. a) Ask one (random) Merlin for its share of π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 . Select 𝑑 ∈ 𝑗, π‘˜, 𝑙 at random; ask remaining Merlins for their share of π‘Ÿ 𝑑 b) Verify that all shares of π‘Ÿ 𝑑 lie in codespace β€’ Completeness: βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ ≀ 𝑏 β‡’ πœ• βˆ— 𝐻 β‰₯ 1 βˆ’ 𝑏/2

  16. Soundness: cheating Merlins (1) β€’ Example: EPR Hamiltonian πΉπ‘œπ‘‘ πΉπ‘œπ‘‘ β€’ Cheating Merlins share single EPR pair β€’ On question 𝐼 β„“ = {π‘Ÿ β„“ , π‘Ÿ β„“+1 } , all Merlins sends back both shares of EPR β€’ On question π‘Ÿ 𝑗 , all Merlins send back their share of first half of EPR β€’ All Merlins asked 𝐼 β„“ β†’ Arthur decodes correctly and verifies low energy β€’ One Merlin asked 𝐼 𝑗 = {π‘Ÿ 𝑗 , π‘Ÿ 𝑗+1 } or 𝐼 π‘—βˆ’1 = {π‘Ÿ π‘—βˆ’1 , π‘Ÿ 𝑗 } , others asked π‘Ÿ 𝑗 β€’ If 𝐼 𝑗 , Arthur checks his first half with other Merlin’s β†’ accept β€’ If 𝐼 𝑗+1 , Arthur checks his second half with otherMerlin’s β†’ reject β€’ Answers from 4 Merlins + code property commit remaining Merlin’s qubit

  17. Soundness: cheating Merlins (2) β€’ Goal: show βˆ€|Ξ¦βŒͺ , Ξ¦ 𝐼 Ξ¦ β‰₯ 𝑐 β‡’ πœ• βˆ— 𝐻 ≀ 1 βˆ’ 𝑐/π‘œ 𝑑 β€’ Contrapositive: πœ• βˆ— 𝐻 > 1 βˆ’ 𝑐/π‘œ 𝑑 β‡’ βˆƒ|Ξ“βŒͺ , Ξ“ 𝐼 Ξ“ < 𝑐 β†’ extract low-energy witness from successful Merlin’s strategies β€’ Given: ? 1 β€’ 5 -prover entangled state πœ” 𝑉 𝑗 β€’ For each 𝑗 , unitary 𝑉 𝑗 extracts π‘Ÿ 𝑗 |πœ”βŒͺ 𝐸𝐹𝐷 Merlin’s answer qubit to π‘Ÿ 𝑗 2 2 𝑉 𝑗 𝑉 ?? π‘˜ β€’ For each term 𝐼 β„“ on π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 , unitary π‘Š β„“ extracts {π‘Ÿ 𝑗 , π‘Ÿ π‘˜ , π‘Ÿ 𝑙 } β€’ Unitaries local to each Merlin, but no a priori notion of qubit β€’ Need to simultaneously extract π‘Ÿ 1 , π‘Ÿ 2 , π‘Ÿ 3 , …

  18. Soundness: cheating Merlins (3) We give circuit generating low-energy witness |Ξ“βŒͺ from successful Merlin’s strategies π‘Ÿ 1 π‘Ÿ 2

  19. Outline 1. Checking proofs locally 2. Entanglement in quantum multiplayer games 3. Result: a quantum multiplayer game for the local Hamiltonian problem 4. Consequences: 1. The quantum PCP conjecture 2. Quantum interactive proof systems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend