the leptonpropagator proposal for corsika
play

The Leptonpropagator PROPOSAL for CORSIKA Jan Soedingrekso, - PowerPoint PPT Presentation

The Leptonpropagator PROPOSAL for CORSIKA Jan Soedingrekso, Alexander Sandrock Jean-Marco Alameddine, Maximilian Sackel CORSIKA Phone Call 05.03.2019 lehrstuhl - + physik e5 05.03.2019 PROPOSAL 2 / 16 lehrstuhl - + physik e5 Monte


  1. The Leptonpropagator PROPOSAL for CORSIKA Jan Soedingrekso, Alexander Sandrock Jean-Marco Alameddine, Maximilian Sackel CORSIKA Phone Call 05.03.2019 lehrstuhl - + physik e5

  2. 05.03.2019 PROPOSAL 2 / 16 lehrstuhl - + physik e5 ▶ Monte Carlo tool for charged lepton propagation through media. ▶ Used in the simulation chain of IceCube ▶ PR opagator with O ptimal P recision and O ptimized S peed for A ll L eptons ▶ Calculate energy losses ▶ Passes interaction points and decay products to further simulation programs

  3. 3 / 16 processes 𝑤 cut ∫ 𝑤 min 𝑤d𝜏 Stochastic loss Described by the interaction probability 𝑤 ∈ [𝑤 cut , 𝑤 max ] 𝑒𝑄(𝐹) = 𝜏(𝐹)d𝑦 𝜏(𝐹) = ∑ ∑ in medium atom in medium 𝑂 𝑗 𝐵 𝑗 𝑤 max ∫ 𝑤 cut d𝜏 05.03.2019 Basic Propagation Principle 𝐵 𝑗 𝑂 𝑗 atom Energy cuts in IceCube ∑ process = 𝐹 ⋅ ∑ d𝑦 d𝐹 𝜏 processes ∑ 𝑔(𝐹) ≔ 𝑤 ∈ [𝑤 min , 𝑤 cut ] Describes energy loss in the range Continuous loss Energy cuts 𝑤 ≔ relative energy loss lehrstuhl - + physik e5 ▶ Distinguish between continous and stochastic energy losses ▶ before: 𝑤 cut = 0.05 ▶ inside: 𝑓 cut = 500 MeV ▶ Cut between continuous and stochastic loss: ▶ behind: 𝑤 cut = 𝑤 max cut = min(𝑓 cut , 𝑤 cut ⋅ 𝐹), ▶ Set energy cuts before, inside and behind the detector d𝑤 d𝑤 d𝑤 d𝑤

  4. 4 / 16 𝐹 𝑗 { { { ⎩ (1 − d𝑄(𝐹(𝑦 𝑗 ))) ⋅ … ⋅ (1 − d𝑄(𝐹(𝑦 𝑔−1 ))) ⋅ d𝑄(𝐹(𝑦 𝑔 )) ≈ exp(−d𝑄(𝐹(𝑦 𝑗 ))) ⋅ … ⋅ exp(−d𝑄(𝐹(𝑦 𝑔−1 )))d𝑄(𝐹(𝑦 𝑔 )) 𝑄(𝐹(𝑦 𝑔 )) 𝐹 𝑔 𝜏(𝐹) { −𝑔(𝐹) d𝐹)] ≕ d(−𝜊) ∈ (0, 1] ∫ 𝐹 𝑔 𝐹 𝑗 𝜏(𝐹) −𝑔(𝐹)d𝐹 = − ln(𝜊) 05.03.2019 Basic Propagation Principle { ⎨ { ⎧ Determine the occurrence of a stochastic loss ��������� ��� ��������� �� � ���������� ���� ����������� �� ���� �� ���������� ���� �� � ��� �� ������ � ������ ���� ����� ������ � ��������� ����� ����������� ��������� � Probability to have no stochastic loss in (𝑦 𝑗 , 𝑦 𝑔 ) , but at 𝑦 𝑔 within d𝑦 : lehrstuhl - + physik e5 ≈ exp [− ∫ 𝑄(𝐹(𝑦 𝑗 )) d𝑄(𝐹(𝑦))] ⋅ d𝑄(𝐹(𝑦 𝑔 )) = d [− exp(− ∫ ⇒ Sample 𝐹 𝑔 from

  5. 5 / 16 d𝑦 Basic Propagation Principle 05.03.2019 0 ) ∼ 𝒪(0, 𝜄 2 𝑦,𝑧 𝜊 (1,2) 𝑦,𝑧 ) , 3𝜊 (1) √ 𝑔(𝐹)𝑤(𝐹) d𝐹 𝐹 𝑗 𝐹 𝑔 𝑢 𝑗 𝑔(𝐹) Advance the particle according to 𝐹 𝑔 𝐹 𝑔 𝐹 𝑗 d𝐹 𝑢 𝑔 lehrstuhl - + physik e5 ▶ Calculating the displacement 𝑦 𝑔 = 𝑦 𝑗 − ∫ ▶ the elapsed time 𝑢 𝑔 = 𝑢 𝑗 − ∫ 𝑤(𝑦) = 𝑢 𝑗 − ∫ ▶ and the deviation from the shower axis (multiple scattering) 𝑣 𝑦,𝑧 = 1 2 ( 1 𝑦,𝑧 + 𝜊 (2)

  6. 6 / 16 𝑤 max Basic Propagation Principle 05.03.2019 d𝜏 𝑤 cut 𝑤(𝜊) 1 d𝜏 ∫ 𝑤 cut 𝐵 𝑗 ∑ in medium atom Calculate the stochastic loss 𝑂 𝑗 lehrstuhl - + physik e5 ▶ Calculate the interaction probability for each process 𝜏 𝑗 = d𝑤 d𝑤 ▶ Calculate the amount of stochastic loss for each atom in the medium 𝜏 ∫ d𝑤 d𝑤 = 𝜊 𝐹 stochastic loss = 𝑤(𝜊) ⋅ 𝐹 particle ▶ Choose the Component, at which the energy loss takes place

  7. Summary of the algorithm Basic loop Do: Calculate the energy until a stochastic loss ↓ Advance the particle according to 𝐹 𝑔 ↓ Calculate the amount of the stochastic loss Until: The particle decays 05.03.2019 Basic Propagation Principle 7 / 16 lehrstuhl - + physik e5

  8. 8 / 16 2𝐹 𝑗 ⏞ set to 1 𝑂 -body phase space ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 𝑞 𝑗 ) 𝑗=1 ∑ 𝑜 ⏞ d 3 𝑞 𝑗 ⏞ 𝑗=1 ∏ 𝑜 ⏞ Raubold-Lynch algorithm two-body phase spaces 05.03.2019 Hadronic Decay Decay ⏞ lehrstuhl - + physik e5 π − K 0 ν K − π + π − ν π − π − π + π 0 ν π − ν sum ▶ Calculate 𝑂 -body decay phase space π − π 0 π 0 π 0 ν π − π 0 ν π − π 0 π 0 ν π − π − π + ν ▶ Not consider the matrix element 10 4 𝛥 = (2𝜌) 4 10 3 |⟨𝑁( p 𝑗 )⟩| 2 𝜀 4 (𝑞 − 2𝑁 ∫ count 10 2 10 1 10 0 ▶ Iterative integration over intermediate 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 � E hadrons /E τ ▶ Exact calculable p n , m n p n ° 1 , m n ° 1 p 3 , m 3 p 2 , m 2 p 1 , m 1 R 2 R 2 R 2 R 2 m 1 M n M n ° 1 M 3 M 2

  9. 9 / 16 05.03.2019 Decay Effects of constant Matrix Element Leptonic decay: known decay width and known matrix element lehrstuhl - + physik e5 |⟨𝑁⟩| 2 = 1 |⟨𝑁⟩| 2 ≠ 1 60000 decay width decay width 40000 phase space phase space non uniform 50000 35000 30000 40000 25000 count count 30000 20000 15000 20000 10000 10000 5000 0 0 1 . 0 1 . 5 ratio ratio 0 . 5 1 . 0 0 . 5 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 E µ /m τ E µ /m τ

  10. 10 / 16 d𝛥 Decay Leptonic Decay 05.03.2019 ( 𝑛 2 spectrum) d𝛥 Outlook: matrix elements for hadronic modes (was not necessary for IceCube, only requiring a smooth F 𝐻 2 𝑦 = 𝐹 𝑚 𝐹 max lehrstuhl - + physik e5 4 exact (theory) approx (theory) exact 3 approx ▶ Muon decay and electronic tau decay counts 𝑚 /𝑁 2 ≈ 0 ) 2 F 𝑁 5 d𝑦 = 𝐻 2 1 192𝜌 3 (3 − 2𝑦)𝑦 2 , 0 ▶ muonic tau decay ( 𝑛 𝜈 /𝑛 𝜐 ≈ 1/17 ) 1 . 0 ratio d𝑦 = 12𝜌 3 𝐹 max √𝐹 2 𝑚 − 𝑛 2 𝑚 [𝑁𝐹 𝑚 (3𝑁 − 4𝐹 𝑚 ) + 𝑛 2 𝑚 (3𝐹 𝑚 − 2𝑁)] exact / approx 0 . 5 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 E µ /m τ

  11. 05.03.2019 Propagation Improvements Propagation Improvements 11 / 16 lehrstuhl - + physik e5 ▶ Continuous Randomization ▶ Multiple parametrizations for cross sections ▶ Multiple parametrizations for multiple scattering ▶ Interpolation tables ▶ Further parameter for the trade-off between performance and precision

  12. 12 / 16 till next stochastic loss ∫ 𝑓 0 d𝐹 −𝑔(𝐹) ⎛ ⎜ ⎝ 𝑓 cut ∫ 0 ⟹ continuous randomization of the muon energy ⟨(𝛦(𝛦𝐹))⟩ ≈ the same ⎟ artifacts in fjnal muon energy spectrum ⎠ with more calculation time and secondaries to deal 05.03.2019 Continuous Randomization of the 𝐹 𝑔 Propagation Improvements 𝑓 cut lehrstuhl - + physik e5 v cut = 0 . 05 v cut = 10 − 4 v cut = 0 . 05 w/ cont. 10 4 ▶ lower energy cut means higher precision, but 10 3 Number of muons 10 2 ▶ higher energy cut results in less precision and 10 1 ▶ muons without a stochastic loss are all treated 10 0 10 − 1 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 × 10 8 Muon Energy after propagation / MeV 𝑓 2 d𝜏 d𝑤 d𝑓⎞

  13. 13 / 16 also consider LPM and TM Effect Propagation Improvements 05.03.2019 with shadowing with hard and soft component and LPM Effect Parametrizations Nuclear inelastic Interaction cross section parametrizations Bremsstrahlung Parametrizations lehrstuhl - + physik e5 ▶ real photon assumption ▶ KelnerKokoulinPetrukhin ▶ Kokoulin ▶ AndreevBezrukovBugaev ▶ Rhode ▶ BezrukovBugaev ▶ PetrukhinShestakov ▶ Zeus ▶ CompleteScreening ▶ SandrockSoedingreksoRhode ▶ Regge Theory ▶ AbramowiczLevinLevyMaor91 ▶ AbramowiczLevinLevyMaor97 𝑓 + 𝑓 − Pair Production ▶ ButkevichMikheyev ▶ RenoSarcevicSu ▶ KelnerKokoulinPetrukhin ▶ ButkevichMikheyev ▶ SandrockSoedingreksoRhode ▶ DuttaRenoSarcevicSeckel

  14. 14 / 16 default Propagation Improvements New Cross Sections 05.03.2019 on current standard parametrizations for bremsstrahlung and pair production lehrstuhl - + physik e5 KKP 1 cm 2 SSR -1/E dEdx / g 10 6 ▶ improved tree-level cross sections based 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 1.10 SSR / KKP ▶ radiative corrections for bremsstrahlung 1.05 ▶ corrections of several percent ratio 1.00 ▶ current used parametrizations are still the 0.95 0.90 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 E / MeV

  15. 15 / 16 components in medium Propagation Improvements Multiple Scattering 05.03.2019 without continuous losses (default) and one lehrstuhl - + physik e5 ▶ Molière Akimenko et al. (1984) MC: Molière ▶ analytic, precise MC: Highland 10 3 MC: HighlandIntegral counted muons N ▶ slow, depending on number of 10 2 ▶ Highland 10 1 ▶ gaussian approximation to Molière ▶ two types available: one including 10 0 − 20 − 10 0 10 total scattering angle θ/ mrad ▶ no scattering

  16. 15 / 16 components in medium Propagation Improvements Multiple Scattering 05.03.2019 without continuous losses (default) and one lehrstuhl - + physik e5 ▶ Molière 0 ▶ analytic, precise performance loss / % − 50 ▶ slow, depending on number of Molière − 100 Highland HighlandIntegral ▶ Highland − 150 ▶ gaussian approximation to Molière − 200 ▶ two types available: one including − 250 10 4 10 6 10 8 10 10 10 12 E/ MeV ▶ no scattering

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend