the impact of mass loss
play

The Impact of Mass Loss Bin C osmos on the Final Structure - PowerPoint PPT Presentation

Anton Pannekoek Institute Binary Stars in Cambridge The Impact of Mass Loss Bin C osmos on the Final Structure Mathieu Renzo and Fate of PhD in Amsterdam Massive Stars Collaborators: C. D. Ott, S. N. Shore, S. E. de Mink, E. Zapartas,


  1. Anton Pannekoek Institute Binary Stars in Cambridge The Impact of Mass Loss Bin C osmos on the Final Structure Mathieu Renzo and Fate of PhD in Amsterdam Massive Stars Collaborators: C. D. Ott, S. N. Shore, S. E. de Mink, E. Zapartas, Y. G¨ otberg, C. J. Neijssel, A. Piro, V. Morozova 1 / 18

  2. Anton Pannekoek Institute Outline Possible Mass Loss Channels • Radiatively Driven Stellar Winds • Roche Lobe Overflow • Impulsive Events Effect of Winds on the Late Stellar Structure • pre-SN Mass • Core Structure & “Explodability” Light Curves from post-Impulsive Mass Loss • Numerical Experiment of Stripping • Pre-SN Stripped Structures • Resulting Lightcurves Conclusions 2 / 18

  3. Anton Pannekoek Institute Radiatively Driven Winds in One Slide Problems: High Non-Linearity and Clumpiness: = � ρ 2 � def � ρ � 2 � = 1 ⇒ Inhomogeneities ⇒ ˙ M < 4 π r 2 ρ v ( r ) f cl 3 / 18

  4. Anton Pannekoek Institute Massive Stars Come in Binaries Up to ∼ 70% of Massive Stars will interact with their companion (e.g. Mason et al. ’09, Sana & Evans ’12, Sana et al. ’12, Kobulnicky et al. ’14) 4 / 18

  5. Anton Pannekoek Institute Impulsive Mass Loss Event “Dynamical Instabilities” ⇐ LBVs, Pulsations, Super-Eddington Winds, Centrifugal Disk Shedding, Common Envelope Ejection (Possibly triggered by η Car, Credits: NASA/ESA Mass Accretion in a Binary) 5 / 18

  6. Anton Pannekoek Institute Outline Possible Mass Loss Channels • Radiatively Driven Stellar Winds • Roche Lobe Overflow • Impulsive Events Effect of Winds on the Late Stellar Structure • pre-SN Mass • Core Structure & “Explodability” Light Curves from post-Impulsive Mass Loss • Numerical Experiment of Stripping • Pre-SN Stripped Structures • Resulting Lightcurves Conclusions 6 / 18

  7. Anton Pannekoek Institute Impact on the Final Mass Legend: • η = 0 . 1 x η = 0 . 33 + η = 1 . 0 η → largest uncertainty Renzo et al. , in prep. 7 / 18

  8. Anton Pannekoek Institute Impact on the Final Mass Impossible to map: Legend: M f ≡ M f ( M ZAMS ) • η = 0 . 1 x η = 0 . 33 + η = 1 . 0 Just because of winds! η → largest uncertainty Renzo et al. , in prep. 7 / 18

  9. Anton Pannekoek Institute “Explodability” & Compactness Parameter def M / M ⊙ ξ M ( t ) = R ( M ) / 1000 km • “Large” ξ 2 . 5 ⇒ harder to explode ⇒ BH formation • “Small” ξ 2 . 5 ⇒ easier to explode ⇒ NS formation (e.g. O’Connor & Ott 2011, Ugliano et al. 2012, Sukhbold & Woosley 2014) M = 2 . 5 M ⊙ not to scale! R ( M ) R ( M ) 8 / 18

  10. Anton Pannekoek Institute Core Structure @ O depletion M ZAMS = 25 M ⊙ models Renzo et al. , in prep. Critical point: Ne core burning/C shell burning Challenges: Nuclear Network & Spatial Resolution 9 / 18

  11. Anton Pannekoek Institute ξ 2 . 5 @ Oxygen Depletion Renzo et al. , in prep. 10 / 18

  12. Anton Pannekoek Institute ξ 2 . 5 @ Oxygen Depletion Legend: • η = 0 . 1 x η = 0 . 33 + η = 1 . 0 Post O burning evolution ⇐ Core contraction ⇐ Amplification of the differences. Renzo et al. , in prep. 11 / 18

  13. Anton Pannekoek Institute Outline Possible Mass Loss Channels • Radiatively Driven Stellar Winds • Roche Lobe Overflow • Impulsive Events Effect of Winds on the Late Stellar Structure • pre-SN Mass • Core Structure & “Explodability” Light Curves from post-Impulsive Mass Loss • Numerical Experiment of Stripping • Pre-SN Stripped Structures • Resulting Lightcurves Conclusions 12 / 18

  14. Anton Pannekoek Institute The Stripping Process 5.2 unstripped 5.1 M = 15 M ⊙ , Z = Z ⊙ 5.0 MCE 4.9 log 10 ( L / L ⊙ ) 4.8 4.7 4.6 mSGB 4.5 4.4 4.3 hMR 4.2 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 log 10 ( T eff / [ K ]) Remove mass in steps of 1 M ⊙ , max { ∆ M impulsive } = 7 M ⊙ . Morozova et al. 2015 – ApJ,814,63M 13 / 18

  15. Anton Pannekoek Institute Pre-SN Stripped Structures Morozova et al. 2015 – ApJ,814,63M 14 / 18

  16. Anton Pannekoek Institute Pre-SN Stripped Structures Morozova et al. 2015 – ApJ,814,63M 15 / 18

  17. Institute Anton Pannekoek Light Curves from Stripped Models Comparison of three progenitor grids 43 Morozova et al. 2015 – ApJ,814,63M mSGB hMR log 10 L [erg s − 1 ] MCE 1 M ⊙ stripped 2 M ⊙ stripped 3 M ⊙ stripped 42 4 M ⊙ stripped 5 M ⊙ stripped 6 M ⊙ stripped 7 M ⊙ stripped 0 50 100 Time [days] SNEC 16 / 18

  18. Anton Pannekoek Institute Outline Possible Mass Loss Channels • Radiatively Driven Stellar Winds • Roche Lobe Overflow • Impulsive Events Effect of Winds on the Late Stellar Structure • pre-SN Mass • Core Structure & “Explodability” Light Curves from post-Impulsive Mass Loss • Numerical Experiment of Stripping • Pre-SN Stripped Structures • Resulting Lightcurves Conclusions 17 / 18

  19. Anton Pannekoek Institute Summary • Systematic uncertainties in modeling mass loss: – pre-explosion mass ⇒ no M f ≡ M f ( M ZAMS ) map; ⇒ “explodability”; – core density profile – surface abundances ⇒ SN spectrum and type. Role of Binaries: • Observational constraints ⇒ colliding winds; • Possibly cause of mass loss (RLOF, CE, accretor); • RLOF can leave some H-rich material ⇒ role in SNIIL? 18 / 18

  20. Anton Pannekoek Institute Summary • Systematic uncertainties in modeling mass loss: – pre-explosion mass ⇒ no M f ≡ M f ( M ZAMS ) map; ⇒ “explodability”; – core density profile – surface abundances ⇒ SN spectrum and type. Role of Binaries: • Observational constraints ⇒ colliding winds; • Possibly cause of mass loss (RLOF, CE, accretor); • RLOF can leave some H-rich material ⇒ role in SNIIL? Thank you! 18 / 18

  21. Anton Pannekoek Institute Outline Backup slides 19 / 18

  22. Anton Pannekoek Institute Mass Loss in (Semi–)Empirical parametric models. Uncertainties encapsulated in efficiency factor: ˙ M ( L , T eff , Z , R , M , ... ) ⇐ η ˙ M ( L , T eff , Z , R , M , ... ) η is a free parameter: η ∈ [ 0 , + ∞ ) Figure: From Smith 2014, ARA&A, 52, 487S 20 / 18

  23. Anton Pannekoek Institute Different dM / dt algorithms with Grid of Z ⊙ ≃ 0 . 019, non-rotating stellar models: • Initial mass: M ZAMS = { 15 , 20 , 25 , 30 , 35 } M ⊙ ; • Efficiency: η ≡ √ f cl = { 1 , 1 1 10 } ; 3 , • Different combinations of wind mass loss rates for “hot” ( T eff ≥ 15 [ kK ] ), “cool” ( T eff < 15 [ kK ] ) and WR stars: Kudritzki et al. ’89; Vink et al. ’00, ’01; Van Loon et al. ’05; Nieuwenhuijzen et al. ’90; De Jager et al. ’88; Nugis & Lamers ’00; Hamann et al. ’98. 21 / 18

  24. Anton Pannekoek Institute Core Structure @ O depletion M ZAMS = 25 M ⊙ models Critical point: Ne core burning/C shell burning 22 / 18

  25. Anton Pannekoek Institute Wind Oservational Diagnostics • P Cygni line profiles Back • Optical and near UV lines (e.g. H α ) • Radio and IR continuum excess • IR spectrum of molecules (e.g. CO) • Maser lines (for low density winds) Assumptions commonly needed: � β � 1 − r • Velocity structure: v ( r ) ≃ with β ≃ 1 R ∗ • Chemical composition and ionization fraction • Spherical symmetry: ˙ M = 4 π r 2 ρ v ( r ) • Steadiness and (often) homogeneity ˙ M derived from fit of (a few) spectral lines. No theoretical guaranties coefficients are constant. 23 / 18

  26. Anton Pannekoek Institute Wolf-Rayet Stars Back Observational Definition: Based on spectral features indicating a Strong Wind : • Hydrogen Depletion ( � = Lack of Hydrogen) • Broad Emission Lines • Steep Velocity Gradients Sub-categories: WN,WC,WO,WNL, etc. Computational Definition ( ): • X s < 0 . 4 Impossible to distinguish sub-categories without spectra! 24 / 18

  27. Anton Pannekoek Institute Chosen Stripping Points 5.2 unstripped 5.1 M = 15 M ⊙ , Z = Z ⊙ 5.0 MCE 4.9 log 10 ( L / L ⊙ ) 4.8 4.7 4.6 mSGB 4.5 4.4 4.3 hMR 4.2 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 log 10 ( T eff / [ K ]) t ( MCE ) − t ( mSGB ) ≃ 10 4 [ yr ] ≪ 14 . 13 × 10 6 [ yr ] 25 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend