the effect of gene interactions on the long term response
play

The effect of gene interactions on the long-term response to - PowerPoint PPT Presentation

The effect of gene interactions on the long-term response to selection Tiago Paix ao Nick Barton Institute for Science and Technology Austria Dagsthul 2016 Tiago Paix ao, Nick Barton Epistasis adaptation from standing variation No new


  1. The effect of gene interactions on the long-term response to selection Tiago Paix˜ ao Nick Barton Institute for Science and Technology Austria Dagsthul 2016 Tiago Paix˜ ao, Nick Barton Epistasis

  2. adaptation from standing variation No new mutations Recombining population Tiago Paix˜ ao, Nick Barton Epistasis

  3. Variance Decomposition Trait: z = α 1 X 1 + α 2 X 2 + ǫ 12 X 1 X 2 Assuming “linkage equilibrium” E [ X i X j ] = E [ X i ] E [ X j ]. Mean: z = α 1 p 1 + α 2 p 2 + ǫ 12 p 1 p 2 where p i = E [ X i ] Tiago Paix˜ ao, Nick Barton Epistasis

  4. Variance Decomposition Trait: z = α 1 X 1 + α 2 X 2 + ǫ 12 X 1 X 2 Assuming “linkage equilibrium” E [ X i X j ] = E [ X i ] E [ X j ]. Mean: z = α 1 p 1 + α 2 p 2 + ǫ 12 p 1 p 2 where p i = E [ X i ] Tiago Paix˜ ao, Nick Barton Epistasis

  5. Variance Decomposition Trait: z = α 1 X 1 + α 2 X 2 + ǫ 12 X 1 X 2 Variance in the population: Var [ z ] = α 2 1 V 1 + α 2 2 V 2 + ǫ 2 12 V 1 V 2 + α 1 α 2 Cov [ X 1 , X 2 ] � �� � =0 + α 1 ǫ 12 Cov [ X 1 , X 1 X 2 ] + α 2 ǫ 12 Cov [ X 2 , X 1 X 2 ] � �� � � �� � V 1 p 2 V 2 p 1 = ( α 1 + ǫ 12 p 2 ) 2 V 1 + ( α 1 + ǫ 12 p 1 ) 2 + ǫ 2 V 2 12 V 1 V 2 � �� � � �� � � �� � A 2 A 2 V AA 1 2 � �� � V A where V i = Var [ X i ] = E [ X 2 i ] − E [ X i ] 2 Tiago Paix˜ ao, Nick Barton Epistasis

  6. Variance Decomposition Trait: z = α 1 X 1 + α 2 X 2 + ǫ 12 X 1 X 2 Variance in the population: Var [ z ] = α 2 1 V 1 + α 2 2 V 2 + ǫ 2 12 V 1 V 2 + α 1 α 2 Cov [ X 1 , X 2 ] � �� � =0 + α 1 ǫ 12 Cov [ X 1 , X 1 X 2 ] + α 2 ǫ 12 Cov [ X 2 , X 1 X 2 ] � �� � � �� � V 1 p 2 V 2 p 1 = ( α 1 + ǫ 12 p 2 ) 2 V 1 + ( α 1 + ǫ 12 p 1 ) 2 + ǫ 2 V 2 12 V 1 V 2 � �� � � �� � � �� � A 2 A 2 V AA 1 2 � �� � V A where V i = Var [ X i ] = E [ X 2 i ] − E [ X i ] 2 Tiago Paix˜ ao, Nick Barton Epistasis

  7. Variance Decomposition Trait: z = α 1 X 1 + α 2 X 2 + ǫ 12 X 1 X 2 Variance in the population: Var [ z ] = α 2 1 V 1 + α 2 2 V 2 + ǫ 2 12 V 1 V 2 + α 1 α 2 Cov [ X 1 , X 2 ] � �� � =0 + α 1 ǫ 12 Cov [ X 1 , X 1 X 2 ] + α 2 ǫ 12 Cov [ X 2 , X 1 X 2 ] � �� � � �� � V 1 p 2 V 2 p 1 = ( α 1 + ǫ 12 p 2 ) 2 V 1 + ( α 1 + ǫ 12 p 1 ) 2 + ǫ 2 V 2 12 V 1 V 2 � �� � � �� � � �� � A 2 A 2 V AA 1 2 � �� � V A where V i = Var [ X i ] = E [ X 2 i ] − E [ X i ] 2 Tiago Paix˜ ao, Nick Barton Epistasis

  8. Variance Decomposition More generally V z = V A + V AA + V AAA + . . . � ∂ z � 2 � V A = V i ∂ p i i � ∂ 2 z � 2 V AA = 1 � V i V j 2 ∂ p i ∂ p j ij � � 2 ∂ 3 z V AAA = 1 � V i V j V k 3! ∂ p i ∂ p j ∂ p k ijk . . . Tiago Paix˜ ao, Nick Barton Epistasis

  9. Response to selection z t = α 1 p t 1 + α 2 p t 2 + ǫ 12 p t 1 p t 2 ∆ z = A i ∆ p i if you remember that, if fitness is w = 1 + β z ∆ p i = p i (1 − p i ) ∂ w = β A i V i ∂ p i and so: � A i ∆ p i = β A 2 ∆ z = i V i i = β V A Tiago Paix˜ ao, Nick Barton Epistasis

  10. Response to selection z t = α 1 p t 1 + α 2 p t 2 + ǫ 12 p t 1 p t 2 ∆ z = A i ∆ p i if you remember that, if fitness is w = 1 + β z ∆ p i = p i (1 − p i ) ∂ w = β A i V i ∂ p i and so: � A i ∆ p i = β A 2 ∆ z = i V i i = β V A Tiago Paix˜ ao, Nick Barton Epistasis

  11. adaptation from standing variation No new mutations Recombining population Tiago Paix˜ ao, Nick Barton Epistasis

  12. Limits on Additive functions I: a fixation probability derivation Robertson (1960) Linear Functions: assuming weak selection, prob. of fixation can be approximated by u ( p 0 ) = 1 − exp ( − 4 N e sp 0 ) 1 − exp ( − 4 N e s ) � ( N e s ) 2 � = p 0 + 2 p 0 (1 − p 0 ) N e s + O and the expected total response is (summing the response at each generation): � � R ∞ = � � � � � � − p 0 p 0 − p 0 p ∞ α i = α i u i i i i i i � � � α 2 i p 0 1 − p 0 β N e = 2 β N e V 0 A = 2 N e R 0 ≈ 2 i i i Tiago Paix˜ ao, Nick Barton Epistasis

  13. Limits on Additive functions I: a fixation probability derivation Robertson (1960) Linear Functions: assuming weak selection, prob. of fixation can be approximated by u ( p 0 ) = 1 − exp ( − 4 N e sp 0 ) 1 − exp ( − 4 N e s ) � ( N e s ) 2 � = p 0 + 2 p 0 (1 − p 0 ) N e s + O and the expected total response is (summing the response at each generation): � � R ∞ = � � � � � � − p 0 p 0 − p 0 p ∞ α i = α i u i i i i i i � � � α 2 i p 0 1 − p 0 β N e = 2 β N e V 0 A = 2 N e R 0 ≈ 2 i i i Tiago Paix˜ ao, Nick Barton Epistasis

  14. Limits on Additive functions I: a fixation probability derivation Robertson (1960) Linear Functions: assuming weak selection, prob. of fixation can be approximated by u ( p 0 ) = 1 − exp ( − 4 N e sp 0 ) 1 − exp ( − 4 N e s ) � ( N e s ) 2 � = p 0 + 2 p 0 (1 − p 0 ) N e s + O and the expected total response is (summing the response at each generation): � � R ∞ = � � � � � � − p 0 p 0 − p 0 p ∞ α i = α i u i i i i i i � � � α 2 i p 0 1 − p 0 β N e = 2 β N e V 0 A = 2 N e R 0 ≈ 2 i i i Tiago Paix˜ ao, Nick Barton Epistasis

  15. Limits on Additive functions I: a fixation probability derivation Robertson (1960) Linear Functions: assuming weak selection, prob. of fixation can be approximated by u ( p 0 ) = 1 − exp ( − 4 N e sp 0 ) 1 − exp ( − 4 N e s ) � ( N e s ) 2 � = p 0 + 2 p 0 (1 − p 0 ) N e s + O and the expected total response is (summing the response at each generation): � � R ∞ = � � � � � � − p 0 p 0 − p 0 p ∞ α i = α i u i i i i i i � � � α 2 i p 0 1 − p 0 β N e = 2 β N e V 0 A = 2 N e R 0 ≈ 2 i i i Tiago Paix˜ ao, Nick Barton Epistasis

  16. Limits on Additive functions II: a QG derivation Assume that selection is weak such that at any individual locus, the dynamics are mostly determined by the sampling noise (genetic drift) Infinitesimal Model E [ p t +1 ] = p t V t +1 = (1 − F ) V t i i R t = β V t A For a randomly mating population F = 1 N . This would be the case if an infinite number of genes contributed infinitesimally to the trait. But as long as the expected change in allele frequency is small compared to its variance ∂ p i ≪ p i (1 − p i ) (∆ p i = p i (1 − p i ) ∂ w ) it should approximately apply. N Tiago Paix˜ ao, Nick Barton Epistasis

  17. Limits on Additive functions II: a QG derivation Additive variance then evolves as � � V t α 2 i V t α 2 i (1 − F ) V t − 1 A = i = i i i � α 2 i (1 − F ) t V 0 i = (1 − F ) t V 0 = A i and the total response is: � � t ∞ ∞ 1 − 1 � � V t V 0 R ∞ = A = β β A N t =0 t =0 β NV 0 = A Tiago Paix˜ ao, Nick Barton Epistasis

  18. Limits on Additive functions II: a QG derivation Additive variance then evolves as � � V t α 2 i V t α 2 i (1 − F ) V t − 1 A = i = i i i � α 2 i (1 − F ) t V 0 i = (1 − F ) t V 0 = A i and the total response is: � � t ∞ ∞ 1 − 1 � � V t V 0 R ∞ = A = β β A N t =0 t =0 β NV 0 = A Tiago Paix˜ ao, Nick Barton Epistasis

  19. What about arbitrary GP maps? Tiago Paix˜ ao, Nick Barton Epistasis

  20. An arbitrary trait α i X i + 1 α ij X i X j + 1 � � z = 3! α ijk X i X j X k + . . . 2 i ij V G = V A + V A (2) + V A (3) + . . . Infinitesimal Model E [ p t +1 ] = p t V t +1 = (1 − F ) V t i i R t = β V t A dynamics of variance components ∞ � V t +1 k ′ F k ′ − 1 V t A ( k ) = (1 − F ) A ( k ′ ) k ′ = k Tiago Paix˜ ao, Nick Barton Epistasis

  21. An arbitrary trait α i X i + 1 α ij X i X j + 1 � � z = 3! α ijk X i X j X k + . . . 2 i ij V G = V A + V A (2) + V A (3) + . . . Infinitesimal Model E [ p t +1 ] = p t V t +1 = (1 − F ) V t i i R t = β V t A dynamics of variance components ∞ � V t +1 k ′ F k ′ − 1 V t A ( k ) = (1 − F ) A ( k ′ ) k ′ = k Tiago Paix˜ ao, Nick Barton Epistasis

  22. An arbitrary trait α i X i + 1 α ij X i X j + 1 � � z = 3! α ijk X i X j X k + . . . 2 i ij V G = V A + V A (2) + V A (3) + . . . Infinitesimal Model E [ p t +1 ] = p t V t +1 = (1 − F ) V t i i R t = β V t A dynamics of variance components ∞ � V t +1 k ′ F k ′ − 1 V t A ( k ) = (1 − F ) A ( k ′ ) k ′ = k Tiago Paix˜ ao, Nick Barton Epistasis

  23. Response to selection In particular, for V A � � V 0 A + 2 FV 0 AA + 3 F 2 V 0 V A =(1 − F ) AAA . . . ∞ � kF k − 1 V 0 =(1 − F ) A ( k ) k =1 Putting it all together: ∞ ∞ ∞ � � � R ∞ = β V t kF k − 1 V 0 A = β (1 − F t ) t A ( k ) t =0 t =0 k =1 ∞ � V 0 A ( k ) = β N e V 0 = β N e G k =1 The long-term response to selection depends only on the initial genetic variance in the population, regardless of genetic architecture. Tiago Paix˜ ao, Nick Barton Epistasis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend