the chinta gunnells action and sums over highest weight
play

The Chinta-Gunnells action and sums over highest weight crystals - PowerPoint PPT Presentation

Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor The Chinta-Gunnells action and sums over highest weight crystals Anna Pusk as University of Massachusetts, Amherst SageDays@ICERM:


  1. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Tokuyama’s Theorem � � G ( b ) · x wt ( b ) . ( x j − v · x i ) · s λ ( x ) = 1 ≤ i < j < r +1 b ∈B λ + ρ Crystal B λ + ρ Schur function s λ ( x ) Sum over the group S r +1 : Position of b in B λ + ρ gives G ( b ) � ∆ v sgn ( w ) · w ( x λ + ρ ) ∆ · w ∈ S r +1 Anna Pusk´ as University of Massachusetts, Amherst

  2. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Tokuyama’s Theorem � � G ( b ) · x wt ( b ) . ( x j − v · x i ) · s λ ( x ) = 1 ≤ i < j < r +1 b ∈B λ + ρ Crystal B λ + ρ Schur function s λ ( x ) Sum over the group S r +1 : Position of b in B λ + ρ gives G ( b ) � ∆ v sgn ( w ) · w ( x λ + ρ ) ∆ · w ∈ S r +1 Anna Pusk´ as University of Massachusetts, Amherst

  3. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Tokuyama’s Theorem � � G ( b ) · x wt ( b ) . ( x j − v · x i ) · s λ ( x ) = 1 ≤ i < j < r +1 b ∈B λ + ρ Crystal B λ + ρ Schur function s λ ( x ) Sum over the group S r +1 : Position of b in B λ + ρ gives G ( b ) � ∆ v sgn ( w ) · w ( x λ + ρ ) ∆ · w ∈ S r +1 Anna Pusk´ as University of Massachusetts, Amherst

  4. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Tokuyama’s Theorem � � G ( b ) · x wt ( b ) . ( x j − v · x i ) · s λ ( x ) = 1 ≤ i < j < r +1 b ∈B λ + ρ Crystal B λ + ρ Schur function s λ ( x ) Sum over the group S r +1 : Position of b in B λ + ρ gives G ( b ) � ∆ v sgn ( w ) · w ( x λ + ρ ) ∆ · w ∈ S r +1 Anna Pusk´ as University of Massachusetts, Amherst

  5. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Casselman-Shalika � x λ + ρ � � � ∆ v · sgn ( w ) · w � ∆ 1 w ∈ S r +1 The action of W on C (Λ) can be modified to depend on n . (Chinta-Gunnells, Chinta-Offen, McNamara) � G ( b ) · x wt ( b ) b ∈B λ + ρ The definition of G ( b ) can be modified to involve Gauss-sums (modulo n ). (Brubaker, Bump, Friedberg, McNamara, Zhang) Anna Pusk´ as University of Massachusetts, Amherst

  6. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Casselman-Shalika � x λ + ρ � � � ∆ v · sgn ( w ) · w � ∆ 1 w ∈ S r +1 The action of W on C (Λ) can be modified to depend on n . (Chinta-Gunnells, Chinta-Offen, McNamara) � G ( b ) · x wt ( b ) b ∈B λ + ρ The definition of G ( b ) can be modified to involve Gauss-sums (modulo n ). (Brubaker, Bump, Friedberg, McNamara, Zhang) Anna Pusk´ as University of Massachusetts, Amherst

  7. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Casselman-Shalika � x λ + ρ � � � ∆ v · sgn ( w ) · w � ∆ 1 w ∈ S r +1 The action of W on C (Λ) can be modified to depend on n . (Chinta-Gunnells, Chinta-Offen, McNamara) � G ( b ) · x wt ( b ) b ∈B λ + ρ The definition of G ( b ) can be modified to involve Gauss-sums (modulo n ). (Brubaker, Bump, Friedberg, McNamara, Zhang) Anna Pusk´ as University of Massachusetts, Amherst

  8. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Casselman-Shalika � x λ + ρ � � � ∆ v · sgn ( w ) · w � ∆ 1 w ∈ S r +1 The action of W on C (Λ) can be modified to depend on n . (Chinta-Gunnells, Chinta-Offen, McNamara) � G ( b ) · x wt ( b ) b ∈B λ + ρ The definition of G ( b ) can be modified to involve Gauss-sums (modulo n ). (Brubaker, Bump, Friedberg, McNamara, Zhang) Anna Pusk´ as University of Massachusetts, Amherst

  9. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Casselman-Shalika � x λ + ρ � � � ∆ v · sgn ( w ) · w � ∆ 1 w ∈ S r +1 The action of W on C (Λ) can be modified to depend on n . (Chinta-Gunnells, Chinta-Offen, McNamara) � G ( b ) · x wt ( b ) b ∈B λ + ρ The definition of G ( b ) can be modified to involve Gauss-sums (modulo n ). (Brubaker, Bump, Friedberg, McNamara, Zhang) Anna Pusk´ as University of Massachusetts, Amherst

  10. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Anna Pusk´ as University of Massachusetts, Amherst

  11. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W ? W w , λ ∨ ≈ T w x λ ∨ Anna Pusk´ as University of Massachusetts, Amherst

  12. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W ? W w , λ ∨ ≈ T w x λ ∨ Anna Pusk´ as University of Massachusetts, Amherst

  13. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W Iwahori-Whittaker W w , λ ∨ ≈ T w x λ ∨ Anna Pusk´ as University of Massachusetts, Amherst

  14. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Iwahori-Whittaker functions and the T w Brubaker-Bump-Licata: express the value of a Whittaker functional on Iwahori-fixed vectors of a principal series representation as T w x λ ∨ relate identities of W w , λ ∨ ≈ T w x λ ∨ to combinatorics of Bott-Samelson resolutions, non-symmetric Macdonald polynomials exploit uniqueness of the Whittaker functional Patnaik: gives a proof of W w , λ ∨ ≈ T w x λ ∨ without exploiting uniqueness the method generalizes to the affine Kac-Moody setting Anna Pusk´ as University of Massachusetts, Amherst

  15. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Iwahori-Whittaker functions and the T w Brubaker-Bump-Licata: express the value of a Whittaker functional on Iwahori-fixed vectors of a principal series representation as T w x λ ∨ relate identities of W w , λ ∨ ≈ T w x λ ∨ to combinatorics of Bott-Samelson resolutions, non-symmetric Macdonald polynomials exploit uniqueness of the Whittaker functional Patnaik: gives a proof of W w , λ ∨ ≈ T w x λ ∨ without exploiting uniqueness the method generalizes to the affine Kac-Moody setting Anna Pusk´ as University of Massachusetts, Amherst

  16. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Iwahori-Whittaker functions and the T w Brubaker-Bump-Licata: express the value of a Whittaker functional on Iwahori-fixed vectors of a principal series representation as T w x λ ∨ relate identities of W w , λ ∨ ≈ T w x λ ∨ to combinatorics of Bott-Samelson resolutions, non-symmetric Macdonald polynomials exploit uniqueness of the Whittaker functional Patnaik: gives a proof of W w , λ ∨ ≈ T w x λ ∨ without exploiting uniqueness the method generalizes to the affine Kac-Moody setting Anna Pusk´ as University of Massachusetts, Amherst

  17. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Iwahori-Whittaker functions and the T w Brubaker-Bump-Licata: express the value of a Whittaker functional on Iwahori-fixed vectors of a principal series representation as T w x λ ∨ relate identities of W w , λ ∨ ≈ T w x λ ∨ to combinatorics of Bott-Samelson resolutions, non-symmetric Macdonald polynomials exploit uniqueness of the Whittaker functional Patnaik: gives a proof of W w , λ ∨ ≈ T w x λ ∨ without exploiting uniqueness the method generalizes to the affine Kac-Moody setting Anna Pusk´ as University of Massachusetts, Amherst

  18. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Iwahori-Whittaker functions and the T w Brubaker-Bump-Licata: express the value of a Whittaker functional on Iwahori-fixed vectors of a principal series representation as T w x λ ∨ relate identities of W w , λ ∨ ≈ T w x λ ∨ to combinatorics of Bott-Samelson resolutions, non-symmetric Macdonald polynomials exploit uniqueness of the Whittaker functional Patnaik: gives a proof of W w , λ ∨ ≈ T w x λ ∨ without exploiting uniqueness the method generalizes to the affine Kac-Moody setting Anna Pusk´ as University of Massachusetts, Amherst

  19. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Iwahori-Whittaker functions and the T w Brubaker-Bump-Licata: express the value of a Whittaker functional on Iwahori-fixed vectors of a principal series representation as T w x λ ∨ relate identities of W w , λ ∨ ≈ T w x λ ∨ to combinatorics of Bott-Samelson resolutions, non-symmetric Macdonald polynomials exploit uniqueness of the Whittaker functional Patnaik: gives a proof of W w , λ ∨ ≈ T w x λ ∨ without exploiting uniqueness the method generalizes to the affine Kac-Moody setting Anna Pusk´ as University of Massachusetts, Amherst

  20. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Iwahori-Whittaker functions and the T w Brubaker-Bump-Licata: express the value of a Whittaker functional on Iwahori-fixed vectors of a principal series representation as T w x λ ∨ relate identities of W w , λ ∨ ≈ T w x λ ∨ to combinatorics of Bott-Samelson resolutions, non-symmetric Macdonald polynomials exploit uniqueness of the Whittaker functional Patnaik: gives a proof of W w , λ ∨ ≈ T w x λ ∨ without exploiting uniqueness the method generalizes to the affine Kac-Moody setting Anna Pusk´ as University of Massachusetts, Amherst

  21. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Iwahori-Whittaker functions and the T w Brubaker-Bump-Licata: express the value of a Whittaker functional on Iwahori-fixed vectors of a principal series representation as T w x λ ∨ relate identities of W w , λ ∨ ≈ T w x λ ∨ to combinatorics of Bott-Samelson resolutions, non-symmetric Macdonald polynomials exploit uniqueness of the Whittaker functional Patnaik: gives a proof of W w , λ ∨ ≈ T w x λ ∨ without exploiting uniqueness the method generalizes to the affine Kac-Moody setting Anna Pusk´ as University of Massachusetts, Amherst

  22. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Demazure operators Demazure operators: σ i simple reflection, f ∈ C (Λ): D σ i ( f ) = f − x − n( α ∨ i ) α ∨ i σ i ( f ) 1 − x − n( α ∨ i ) α ∨ i Demazure-Lusztig operators: T σ i ( f ) = (1 − v · x − n( α ∨ i ) α ∨ i ) · D σ i ( f ) − f n n( α ∨ ) = gcd( n , || α ∨ || 2 ) and σ i ( f ) is the Chinta-Gunnells action D σ i , T σ i satisfy Braid-relations − → D w , T w for every w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  23. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Demazure operators Demazure operators: σ i simple reflection, f ∈ C (Λ): D σ i ( f ) = f − x − n( α ∨ i ) α ∨ i σ i ( f ) 1 − x − n( α ∨ i ) α ∨ i Demazure-Lusztig operators: T σ i ( f ) = (1 − v · x − n( α ∨ i ) α ∨ i ) · D σ i ( f ) − f n n( α ∨ ) = gcd( n , || α ∨ || 2 ) and σ i ( f ) is the Chinta-Gunnells action D σ i , T σ i satisfy Braid-relations − → D w , T w for every w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  24. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Demazure operators Demazure operators: σ i simple reflection, f ∈ C (Λ): D σ i ( f ) = f − x − n( α ∨ i ) α ∨ i σ i ( f ) 1 − x − n( α ∨ i ) α ∨ i Demazure-Lusztig operators: T σ i ( f ) = (1 − v · x − n( α ∨ i ) α ∨ i ) · D σ i ( f ) − f n n( α ∨ ) = gcd( n , || α ∨ || 2 ) and σ i ( f ) is the Chinta-Gunnells action D σ i , T σ i satisfy Braid-relations − → D w , T w for every w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  25. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Demazure operators Demazure operators: σ i simple reflection, f ∈ C (Λ): D σ i ( f ) = f − x − n( α ∨ i ) α ∨ i σ i ( f ) 1 − x − n( α ∨ i ) α ∨ i Demazure-Lusztig operators: T σ i ( f ) = (1 − v · x − n( α ∨ i ) α ∨ i ) · D σ i ( f ) − f n n( α ∨ ) = gcd( n , || α ∨ || 2 ) and σ i ( f ) is the Chinta-Gunnells action D σ i , T σ i satisfy Braid-relations − → D w , T w for every w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  26. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Demazure operators Demazure operators: σ i simple reflection, f ∈ C (Λ): D σ i ( f ) = f − x − n( α ∨ i ) α ∨ i σ i ( f ) 1 − x − n( α ∨ i ) α ∨ i Demazure-Lusztig operators: T σ i ( f ) = (1 − v · x − n( α ∨ i ) α ∨ i ) · D σ i ( f ) − f n n( α ∨ ) = gcd( n , || α ∨ || 2 ) and σ i ( f ) is the Chinta-Gunnells action D σ i , T σ i satisfy Braid-relations − → D w , T w for every w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  27. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Identities for the long word Theorem (Chinta, Gunnells, P.) � � D w 0 = 1 e n( α ) α · w . · sgn ( w ) · � ∆ w ∈ W α ∈ Φ( w − 1 ) � � ∆ v · D w 0 = T w . w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  28. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Identities for the long word Theorem (Chinta, Gunnells, P.) � � D w 0 = 1 e n( α ) α · w . · sgn ( w ) · � ∆ w ∈ W α ∈ Φ( w − 1 ) � � ∆ v · D w 0 = T w . w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  29. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Identities for the long word Theorem (Chinta, Gunnells, P.) � � D w 0 = 1 e n( α ) α · w . · sgn ( w ) · � ∆ w ∈ W α ∈ Φ( w − 1 ) � � ∆ v · D w 0 = T w . w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  30. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Identities for the long word Theorem (Chinta, Gunnells, P.) � � D w 0 = 1 e n( α ) α · w . · sgn ( w ) · � ∆ w ∈ W α ∈ Φ( w − 1 ) � � ∆ v · D w 0 = T w . w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  31. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Anna Pusk´ as University of Massachusetts, Amherst

  32. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W Hecke symmetrizer � T w w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  33. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W Hecke symmetrizer � T w w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  34. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W Hecke symmetrizer � T w w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  35. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W � T w = ∆ v D w 0 ∼ ∆ v χ λ w ∈ W Hecke symmetrizer � T w w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  36. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W Hecke symmetrizer � T w w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  37. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W ? Hecke symmetrizer � T w w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  38. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Theorem (P.)   � �  · x λ ∨ x − ρ G ( b ) x wt ( b ) T u = u ≤ w b ∈B ( w ) λ + ρ Sum over the Weyl B ( w ) λ + ρ Demazure subcrystal group, bounded in the Bruhat order Anna Pusk´ as University of Massachusetts, Amherst

  39. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Theorem (P.)   � �  · x λ ∨ x − ρ G ( b ) x wt ( b ) T u = u ≤ w b ∈B ( w ) λ + ρ Sum over the Weyl B ( w ) λ + ρ Demazure subcrystal group, bounded in the Bruhat order Anna Pusk´ as University of Massachusetts, Amherst

  40. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Theorem (P.)   � �  · x λ ∨ x − ρ G ( b ) x wt ( b ) T u = u ≤ w b ∈B ( w ) λ + ρ Sum over the Weyl B ( w ) λ + ρ Demazure subcrystal group, bounded in the Bruhat order Anna Pusk´ as University of Massachusetts, Amherst

  41. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Theorem (P.)   � �  · x λ ∨ x − ρ G ( b ) x wt ( b ) T u = u ≤ w b ∈B ( w ) λ + ρ Sum over the Weyl B ( w ) λ + ρ Demazure subcrystal group, bounded in the Bruhat order Anna Pusk´ as University of Massachusetts, Amherst

  42. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Anna Pusk´ as University of Massachusetts, Amherst

  43. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W Induction by rank Hecke symmetrizer � T w w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  44. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W Induction by rank Hecke symmetrizer � T w w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  45. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Sum over Weyl group Sum over crystal ? � � e λ + ρ � � � G ( b ) · e wt ( b ) ∆ v sgn ( w ) w � b ∈B λ + ρ ∆ 1 w ∈ W Induction by rank Hecke symmetrizer � T w w ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  46. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Induction by rank · Joint work in progress with Paul E. Gunnells: this technique extends to Cartan type D . Anna Pusk´ as University of Massachusetts, Amherst

  47. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Induction by rank � � T w = T w · (1 + T r + T r T r − 1 + · · · + T r T r − 1 · · · T 1 ) w ∈ W ( r ) w ∈ W ( r − 1) Joint work in progress with Paul E. Gunnells: this technique extends to Cartan type D . Anna Pusk´ as University of Massachusetts, Amherst

  48. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Induction by rank � � T w = T w · (1 + T r + T r T r − 1 + · · · + T r T r − 1 · · · T 1 ) w ∈ W ( r ) w ∈ W ( r − 1) Joint work in progress with Paul E. Gunnells: this technique extends to Cartan type D . Anna Pusk´ as University of Massachusetts, Amherst

  49. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Induction by rank � � T w = T w · (1 + T r + T r T r − 1 + · · · + T r T r − 1 · · · T 1 ) w ∈ W ( r ) w ∈ W ( r − 1) Joint work in progress with Paul E. Gunnells: this technique extends to Cartan type D . Anna Pusk´ as University of Massachusetts, Amherst

  50. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Induction by rank � � T w = T w · (1 + T r + T r T r − 1 + · · · + T r T r − 1 · · · T 1 ) w ∈ W ( r ) w ∈ W ( r − 1) Joint work in progress with Paul E. Gunnells: this technique extends to Cartan type D . Anna Pusk´ as University of Massachusetts, Amherst

  51. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Demazure-Lusztig operator T w Questions: interpretation as metaplectic Iwahori-Whittaker function infinite dimensional case: metaplectic Kac-Moody Whittaker functions identities and relationship to Weyl-Kac character � � � e λ ∼ m ∆ v χ λ T w w ∈ W Joint work with Manish Patnaik Anna Pusk´ as University of Massachusetts, Amherst

  52. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Demazure-Lusztig operator T w Questions: interpretation as metaplectic Iwahori-Whittaker function infinite dimensional case: metaplectic Kac-Moody Whittaker functions identities and relationship to Weyl-Kac character � � � e λ ∼ m ∆ v χ λ T w w ∈ W Joint work with Manish Patnaik Anna Pusk´ as University of Massachusetts, Amherst

  53. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Demazure-Lusztig operator T w Questions: interpretation as metaplectic Iwahori-Whittaker function infinite dimensional case: metaplectic Kac-Moody Whittaker functions identities and relationship to Weyl-Kac character � � � e λ ∼ m ∆ v χ λ T w w ∈ W Joint work with Manish Patnaik Anna Pusk´ as University of Massachusetts, Amherst

  54. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Demazure-Lusztig operator T w Questions: interpretation as metaplectic Iwahori-Whittaker function infinite dimensional case: metaplectic Kac-Moody Whittaker functions identities and relationship to Weyl-Kac character � � � e λ ∼ m ∆ v χ λ T w w ∈ W Joint work with Manish Patnaik Anna Pusk´ as University of Massachusetts, Amherst

  55. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Demazure-Lusztig operator T w Questions: interpretation as metaplectic Iwahori-Whittaker function infinite dimensional case: metaplectic Kac-Moody Whittaker functions identities and relationship to Weyl-Kac character � � � e λ ∼ m ∆ v χ λ T w w ∈ W Joint work with Manish Patnaik Anna Pusk´ as University of Massachusetts, Amherst

  56. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Demazure-Lusztig operator T w Questions: interpretation as metaplectic Iwahori-Whittaker function infinite dimensional case: metaplectic Kac-Moody Whittaker functions identities and relationship to Weyl-Kac character � � � e λ ∼ m ∆ v χ λ T w w ∈ W Joint work with Manish Patnaik Anna Pusk´ as University of Massachusetts, Amherst

  57. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Demazure-Lusztig operator T w Questions: interpretation as metaplectic Iwahori-Whittaker function infinite dimensional case: metaplectic Kac-Moody Whittaker functions identities and relationship to Weyl-Kac character � � � e λ ∼ m ∆ v χ λ T w w ∈ W Joint work with Manish Patnaik Anna Pusk´ as University of Massachusetts, Amherst

  58. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Iwahori-Whittaker functions � W u , λ ∨ � W ( π λ ∨ ) = q − 2 � ρ , λ ∨ � · � � W u , λ ∨ u ∈ W Theorem (Patnaik, P.) Let w , w ′ ∈ W and w = σ i w ′ with ℓ ( w ) = ℓ ( w ′ ) + 1 : T σ i ( � W w ′ , λ ∨ ) = � W w , λ ∨ W w , λ ∨ = q � ρ , λ ∨ � · T w ( e λ ∨ ). Corollary: � (New proof of the metaplectic Casselman-Shalika formula.) Anna Pusk´ as University of Massachusetts, Amherst

  59. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Iwahori-Whittaker functions � W u , λ ∨ � W ( π λ ∨ ) = q − 2 � ρ , λ ∨ � · � � W u , λ ∨ u ∈ W Theorem (Patnaik, P.) Let w , w ′ ∈ W and w = σ i w ′ with ℓ ( w ) = ℓ ( w ′ ) + 1 : T σ i ( � W w ′ , λ ∨ ) = � W w , λ ∨ W w , λ ∨ = q � ρ , λ ∨ � · T w ( e λ ∨ ). Corollary: � (New proof of the metaplectic Casselman-Shalika formula.) Anna Pusk´ as University of Massachusetts, Amherst

  60. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Iwahori-Whittaker functions � W u , λ ∨ � W ( π λ ∨ ) = q − 2 � ρ , λ ∨ � · � � W u , λ ∨ u ∈ W Theorem (Patnaik, P.) Let w , w ′ ∈ W and w = σ i w ′ with ℓ ( w ) = ℓ ( w ′ ) + 1 : T σ i ( � W w ′ , λ ∨ ) = � W w , λ ∨ W w , λ ∨ = q � ρ , λ ∨ � · T w ( e λ ∨ ). Corollary: � (New proof of the metaplectic Casselman-Shalika formula.) Anna Pusk´ as University of Massachusetts, Amherst

  61. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Iwahori-Whittaker functions � W u , λ ∨ � W ( π λ ∨ ) = q − 2 � ρ , λ ∨ � · � � W u , λ ∨ u ∈ W Theorem (Patnaik, P.) Let w , w ′ ∈ W and w = σ i w ′ with ℓ ( w ) = ℓ ( w ′ ) + 1 : T σ i ( � W w ′ , λ ∨ ) = � W w , λ ∨ W w , λ ∨ = q � ρ , λ ∨ � · T w ( e λ ∨ ). Corollary: � (New proof of the metaplectic Casselman-Shalika formula.) Anna Pusk´ as University of Massachusetts, Amherst

  62. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Metaplectic Iwahori-Whittaker functions � W u , λ ∨ � W ( π λ ∨ ) = q − 2 � ρ , λ ∨ � · � � W u , λ ∨ u ∈ W Theorem (Patnaik, P.) Let w , w ′ ∈ W and w = σ i w ′ with ℓ ( w ) = ℓ ( w ′ ) + 1 : T σ i ( � W w ′ , λ ∨ ) = � W w , λ ∨ W w , λ ∨ = q � ρ , λ ∨ � · T w ( e λ ∨ ). Corollary: � (New proof of the metaplectic Casselman-Shalika formula.) Anna Pusk´ as University of Massachusetts, Amherst

  63. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Nonmetaplectic, affine result: Theorem (Patnaik) � W ( π λ ∨ ) = q � ρ , λ ∨ � · T u ( e λ ∨ ) = m · q � ρ , λ ∨ � · χ λ ∨ u ∈ W Metaplectic context: What is the metaplectic cover of a Kac-Moody group? Issues with the convergence of � T u ( e λ ∨ ) u ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  64. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Nonmetaplectic, affine result: Theorem (Patnaik) � W ( π λ ∨ ) = q � ρ , λ ∨ � · T u ( e λ ∨ ) = m · q � ρ , λ ∨ � · χ λ ∨ u ∈ W Metaplectic context: What is the metaplectic cover of a Kac-Moody group? Issues with the convergence of � T u ( e λ ∨ ) u ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  65. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Nonmetaplectic, affine result: Theorem (Patnaik) � W ( π λ ∨ ) = q � ρ , λ ∨ � · T u ( e λ ∨ ) = m · q � ρ , λ ∨ � · χ λ ∨ u ∈ W Metaplectic context: What is the metaplectic cover of a Kac-Moody group? Issues with the convergence of � T u ( e λ ∨ ) u ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  66. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Nonmetaplectic, affine result: Theorem (Patnaik) � W ( π λ ∨ ) = q � ρ , λ ∨ � · T u ( e λ ∨ ) = m · q � ρ , λ ∨ � · χ λ ∨ u ∈ W Metaplectic context: What is the metaplectic cover of a Kac-Moody group? Issues with the convergence of � T u ( e λ ∨ ) u ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  67. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Nonmetaplectic, affine result: Theorem (Patnaik) � W ( π λ ∨ ) = q � ρ , λ ∨ � · T u ( e λ ∨ ) = m · q � ρ , λ ∨ � · χ λ ∨ u ∈ W Metaplectic context: What is the metaplectic cover of a Kac-Moody group? Issues with the convergence of � T u ( e λ ∨ ) u ∈ W Anna Pusk´ as University of Massachusetts, Amherst

  68. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Well-definedness and Convergence For any w ∈ W we may expand � T w = A u ( w )[ u ] u ≤ w Summing this over W : � � � T w = A u ( w )[ u ] w ∈ W w ∈ W u ≤ w � For a fixed u ∈ W , why is A u ( w ) well-defined? u ≤ w Anna Pusk´ as University of Massachusetts, Amherst

  69. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Well-definedness and Convergence For any w ∈ W we may expand � T w = A u ( w )[ u ] u ≤ w Summing this over W : � � � T w = A u ( w )[ u ] w ∈ W w ∈ W u ≤ w � For a fixed u ∈ W , why is A u ( w ) well-defined? u ≤ w Anna Pusk´ as University of Massachusetts, Amherst

  70. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Well-definedness and Convergence For any w ∈ W we may expand � T w = A u ( w )[ u ] u ≤ w Summing this over W : � � � T w = A u ( w )[ u ] w ∈ W w ∈ W u ≤ w � For a fixed u ∈ W , why is A u ( w ) well-defined? u ≤ w Anna Pusk´ as University of Massachusetts, Amherst

  71. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Well-definedness and Convergence For any w ∈ W we may expand � T w = A u ( w )[ u ] u ≤ w Summing this over W : � � � T w = A u ( w )[ u ] w ∈ W w ∈ W u ≤ w � For a fixed u ∈ W , why is A u ( w ) well-defined? u ≤ w Anna Pusk´ as University of Massachusetts, Amherst

  72. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Results - Patnaik, P. Given F , ( · , · ) : F ∗ × F ∗ → A , G , Q : Λ ∨ → Z , B.There exists 1 → A → E → G → 1 such that restricted to the torus H ( λ ∨ , µ ∨ ∈ Λ ∨ , s , t ∈ F ∗ , s λ ∨ , t µ ∨ ∈ H ): [ s λ ∨ , t µ ∨ ] = ( s , t ) B( λ ∨ , µ ∨ ) .   � � W ( π λ ∨ ) = m Φ ∨ � α ∨  w ⋆ e λ ∨ , ( − 1) ℓ ( w )  e − � n ∆ Φ ∨ n w ∈ W α ∨ ∈ Φ ∨ � n ( w ) Anna Pusk´ as University of Massachusetts, Amherst

  73. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Results - Patnaik, P. Given F , ( · , · ) : F ∗ × F ∗ → A , G , Q : Λ ∨ → Z , B.There exists 1 → A → E → G → 1 such that restricted to the torus H ( λ ∨ , µ ∨ ∈ Λ ∨ , s , t ∈ F ∗ , s λ ∨ , t µ ∨ ∈ H ): [ s λ ∨ , t µ ∨ ] = ( s , t ) B( λ ∨ , µ ∨ ) .   � � W ( π λ ∨ ) = m Φ ∨ � α ∨  w ⋆ e λ ∨ , ( − 1) ℓ ( w )  e − � n ∆ Φ ∨ n w ∈ W α ∨ ∈ Φ ∨ � n ( w ) Anna Pusk´ as University of Massachusetts, Amherst

  74. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Results - Patnaik, P. Given F , ( · , · ) : F ∗ × F ∗ → A , G , Q : Λ ∨ → Z , B.There exists 1 → A → E → G → 1 such that restricted to the torus H ( λ ∨ , µ ∨ ∈ Λ ∨ , s , t ∈ F ∗ , s λ ∨ , t µ ∨ ∈ H ): [ s λ ∨ , t µ ∨ ] = ( s , t ) B( λ ∨ , µ ∨ ) .   � � W ( π λ ∨ ) = m Φ ∨ � α ∨  w ⋆ e λ ∨ , ( − 1) ℓ ( w )  e − � n ∆ Φ ∨ n w ∈ W α ∨ ∈ Φ ∨ � n ( w ) Anna Pusk´ as University of Massachusetts, Amherst

  75. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Results - Patnaik, P. Given F , ( · , · ) : F ∗ × F ∗ → A , G , Q : Λ ∨ → Z , B.There exists 1 → A → E → G → 1 such that restricted to the torus H ( λ ∨ , µ ∨ ∈ Λ ∨ , s , t ∈ F ∗ , s λ ∨ , t µ ∨ ∈ H ): [ s λ ∨ , t µ ∨ ] = ( s , t ) B( λ ∨ , µ ∨ ) .   � � W ( π λ ∨ ) = m Φ ∨ � α ∨  w ⋆ e λ ∨ , ( − 1) ℓ ( w )  e − � n ∆ Φ ∨ n w ∈ W α ∨ ∈ Φ ∨ � n ( w ) Anna Pusk´ as University of Massachusetts, Amherst

  76. Motivation Identities of operators Metaplectic Tokuyama Metaplectic Kac-Moody Correction factor Results - Patnaik, P. Given F , ( · , · ) : F ∗ × F ∗ → A , G , Q : Λ ∨ → Z , B.There exists 1 → A → E → G → 1 such that restricted to the torus H ( λ ∨ , µ ∨ ∈ Λ ∨ , s , t ∈ F ∗ , s λ ∨ , t µ ∨ ∈ H ): [ s λ ∨ , t µ ∨ ] = ( s , t ) B( λ ∨ , µ ∨ ) .   � � W ( π λ ∨ ) = m Φ ∨ � α ∨  w ⋆ e λ ∨ , ( − 1) ℓ ( w )  e − � n ∆ Φ ∨ n w ∈ W α ∨ ∈ Φ ∨ � n ( w ) Anna Pusk´ as University of Massachusetts, Amherst

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend